Research Article
BibTex RIS Cite

EV ALETLERİ İÇİN ASİMETRİK STATOR YAPISININ BLDC MOTOR PERFORMANSINA ETKİLERİ

Year 2024, Volume: 12 Issue: 4, 663 - 675, 25.12.2024
https://doi.org/10.21923/jesd.1541595

Abstract

Fırçasız doğru akım motorları uzun ömür, yüksek verim, düşük bakım maliyetleri ve kontrol kolaylığı gibi avantajları nedeniyle endüstride özellikle ev aletlerinde sıklıkla tercih edilmektedirler. Bu avantajlarının yanı sıra, moment dalgalanması ve titreşim seviyelerinin yüksek olması bu motorların başlıca dezavantajları olarak bilinmektedir. Bu çalışmada, ev aletleri için tasarlanan fırçasız doğru akım motorun stator diş yapısında alternatif asimetrik tasarımlar gerçekleştirilmiş ve asimetrik diş yapısının neden olduğu düzgün olmayan hava aralığının motor performansı üzerindeki etkilerinin karşılaştırmalı analizleri sunulmuştur. Stator diş yapısında saat yönünde asimetrik tasarıma sahip model (CW) ve saat yönünün tersine asimetrik tasarıma sahip model (CCW) olmak üzere iki farklı asimetrik yapı stator tasarımında belirlenmiştir. Bu alternatif tasarımlarla, referans motorla karşılaştırıldığında moment dalgalanması ve vuruntu momenti açısından iyileştirmeler yapılmaktadır; özellikle CCW-2 modeli, referans motor için %23,1'e kıyasla %19,4 ile en düşük dalgalanmayı ve vuruntu momentinde %42'lik bir azalma elde etmektedir. Motor modellerinin tasarımı ANSYS EDT programında iki boyutlu olarak yapılmış ve Sonlu Elemanlar Yöntemi ile analiz edilmiştir. Analiz sonuçlarında hava aralığı akı yoğunluğu, moment, moment dalgalanması ve vuruntu momenti incelenmiş, Hızlı Fourier Dönüşümü ile elde edilen akı yoğunluğu ve moment spektrumu karşılaştırmalı olarak sunulmuştur.

References

  • Hendershot, J. R., & Miller, T. J. E. (2010). Design of Brushless Permanent- Magnet Machines. Motor Design Books LLC.
  • Huang, X., Goodman, A., Gerada, C., Fang, Y., & Lu, Q. (2012). Design of a five-phase brushless DC motor for a safety critical aerospace application. IEEE Transactions on Industrial Electronics, 59(9), 3532–3541. https://doi.org/10.1109/TIE.2011.2172170
  • Karan, V. K., Shekhar, S., Alam, A., & Thakur, A. (2024). Elimination of torque ripples by multiple slope ST-DTC vectors in PM-BLDC drive. Electrical Engineering, 106(3), 3393–3402. https://doi.org/10.1007/s00202-023-02155-0
  • Khazaee, A., Zarchi, H. A., Markadeh, G. A., & Mosaddegh Hesar, H. (2021). MTPA Strategy for Direct Torque Control of Brushless DC Motor Drive. IEEE Transactions on Industrial Electronics, 68(8), 6692–6700. https://doi.org/10.1109/TIE.2020.3009576
  • Kwack, J., Min, S., & Hong, J.-P. (2010). Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method. IEEE Transactions on Magnetics, 46(6), 2108–2111. https://doi.org/10.1109/TMAG.2010.2044871
  • Lee, S.-K., Kang, G.-H., Hur, J., & Kim, B.-W. (2012). Stator and rotor shape designs of interior permanent magnet type brushless DC motor for reducing torque fluctuation. IEEE Transactions on Magnetics, 48(11), 4662–4665. https://doi.org/10.1109/TMAG.2012.2201455
  • Li, Z., Fan, X., Kong, Q., Liu, J., & Zhang, S. (2024). Torque Ripple Suppression of BLDCM With Optimal Duty Cycle and Switch State by FCS-MPC. IEEE Open Journal of Power Electronics, 5(February), 381–391. https://doi.org/10.1109/OJPEL.2024.3368221
  • Lin, H., Wang, D., Liu, D., & Chen, J. (2014). Influence of magnet shape on torque behavior in surface-mounted permanent magnet motors. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 44–47. https://doi.org/10.1109/ICEMS.2014.7013448
  • Lipo, T. A. (2017). Intorduction to AC Machine Design. John Wiley & Sons Inc.
  • Liu, Y., Zhu, Z. Q., & Howe, D. (2005). Direct torque control of brushless DC drives with reduced torque ripple. IEEE Transactions on Industry Applications, 41(2), 599–608. https://doi.org/10.1109/TIA.2005.844853
  • Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B., Chokkalingam, B., & Mihet-Popa, L. (2022). A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications. IEEE Access, 10, 54833–54869. https://doi.org/10.1109/ACCESS.2022.3175011
  • Mohanraj, D., Gopalakrishnan, J., Chokkalingam, B., & Mihet-Popa, L. (2022). Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review. IEEE Access, 10(July), 73635–73674. https://doi.org/10.1109/ACCESS.2022.3187515
  • Park, J. H., & Lee, D. H. (2020). Simple Commutation Torque Ripple Reduction Using PWM with Compensation Voltage. IEEE Transactions on Industry Applications, 56(3), 2654–2662. https://doi.org/10.1109/TIA.2020.2968412
  • Prabhu, N., Thirumalaivasan, R., & Ashok, B. (2023). Critical Review on Torque Ripple Sources and Mitigation Control Strategies of BLDC Motors in Electric Vehicle Applications. IEEE Access, 11(October), 115699–115739. https://doi.org/10.1109/ACCESS.2023.3324419
  • Prakash, A., & Naveen, C. (2023). Combined strategy for tuning sensor-less brushless DC motor using SEPIC converter to reduce torque ripple. ISA Transactions, 133, 328–344. https://doi.org/10.1016/j.isatra.2022.06.045
  • Rahman, M. M., Kim, K.-T., & Hur, J. (2014). Design and Optimization of Neodymium-Free SPOKE-Type Motor With Segmented Wing-Shaped PM. IEEE Transactions on Magnetics, 50(2), 865–868. https://doi.org/10.1109/tmag.2013.2282151
  • Raja, M. S., & Geethalakshmi, B. (2018). Modified Rotor Material for Minimization of Torque Ripple for Interior Permanent Magnet BLDC motor. Materials Today: Proceedings, 5(2), 3639–3647. https://doi.org/10.1016/j.matpr.2017.11.614
  • Rupam, Marwaha, S., & Marwaha, A. (2022). FEA Based Design of Outer Rotor BLDC Motor for Battery Electric Vehicle. International Journal of Electrical and Electronics Research, 10(4), 1130–1134. https://doi.org/10.37391/ijeer.100459
  • Shi, T., Cao, Y., Jiang, G., Li, X., & Xia, C. (2017). A Torque Control Strategy for Torque Ripple Reduction of Brushless DC Motor with Nonideal Back Electromotive Force. IEEE Transactions on Industrial Electronics, 64(6), 4423–4433. https://doi.org/10.1109/TIE.2017.2674587
  • Tezcan, M. M., & Yetgin, A. G. (2023). An Approach For Reducing Torque Ripples on Permanent Magnet Synchronous Motors : Slitted Stator Core. Gazi Journal of Engineering Sciences, 9(2), 163–173. https://doi.org/10.30855/gmbd.0705061
  • Trivedi, M. S., & Keshri, R. K. (2020). Evaluation of Predictive Current Control Techniques for PM BLDC Motor in Stationary Plane. IEEE Access, 8, 46217–46228. https://doi.org/10.1109/ACCESS.2020.2978695
  • Wang, L., Zhu, Z. Q., Bin, H., & Gong, L. (2021). A Commutation Error Compensation Strategy for High-Speed Brushless DC Drive Based on Adaline Filter. IEEE Transactions on Industrial Electronics, 68(5), 3728–3738. https://doi.org/10.1109/TIE.2020.2984445
  • Xia, K., Ye, Y., Ni, J., Wang, Y., & Xu, P. (2020). Model predictive control method of torque ripple reduction for BLDC Motor. IEEE Transactions on Magnetics, 56(1), 1–6. https://doi.org/10.1109/TMAG.2019.2950953
  • Yao, X., Zhao, J., Wang, J., Huang, S., & Jiang, Y. (2019). Commutation Torque Ripple Reduction for Brushless DC Motor Based on an Auxiliary Step-Up Circuit. IEEE Access, 7, 138721–138731. https://doi.org/10.1109/ACCESS.2019.2943411

EFFECTS OF ASYMMETRICAL STATOR STRUCTURE ON BLDC MOTOR PERFORMANCE FOR HOUSEHOLD APPLIANCES

Year 2024, Volume: 12 Issue: 4, 663 - 675, 25.12.2024
https://doi.org/10.21923/jesd.1541595

Abstract

Brushless direct current motors (BLDCM) have been frequently preferred in the industry, especially in home appliances, due to their advantages such as long life, high efficiency, low maintenance costs and ease of control. In addition to these advantages, the main disadvantages of these motors are known to be high torque ripple and vibration levels. In this study, alternative asymmetric designs are realized in the stator tooth structure of the BLDCM designed for home appliances, and comparative analyses of the effects of the non-uniform air gap caused by the asymmetric tooth structure on the motor performance are presented. Two different asymmetric structures, namely the model with clockwise asymmetric design (CW) and the model with counterclockwise asymmetric design (CCW) in the stator tooth structure, are determined in the stator design. With these alternative designs, improvements are made in terms of torque ripple and cogging torque when compared with the reference motor; notably, the CCW-2 model achieves the lowest ripple at 19.4% compared to 23.1% for the reference motor, and a 42% reduction in cogging torque. The design of the motor models is made in ANSYS EDT program as two dimensional (2D) and analyzed with the Finite Element Method (FEM). In the analysis results, air gap flux density, torque, torque ripple and cogging torque are examined, and the flux density and torque spectrum obtained by Fast Fourier Transform (FFT) are presented comparatively

References

  • Hendershot, J. R., & Miller, T. J. E. (2010). Design of Brushless Permanent- Magnet Machines. Motor Design Books LLC.
  • Huang, X., Goodman, A., Gerada, C., Fang, Y., & Lu, Q. (2012). Design of a five-phase brushless DC motor for a safety critical aerospace application. IEEE Transactions on Industrial Electronics, 59(9), 3532–3541. https://doi.org/10.1109/TIE.2011.2172170
  • Karan, V. K., Shekhar, S., Alam, A., & Thakur, A. (2024). Elimination of torque ripples by multiple slope ST-DTC vectors in PM-BLDC drive. Electrical Engineering, 106(3), 3393–3402. https://doi.org/10.1007/s00202-023-02155-0
  • Khazaee, A., Zarchi, H. A., Markadeh, G. A., & Mosaddegh Hesar, H. (2021). MTPA Strategy for Direct Torque Control of Brushless DC Motor Drive. IEEE Transactions on Industrial Electronics, 68(8), 6692–6700. https://doi.org/10.1109/TIE.2020.3009576
  • Kwack, J., Min, S., & Hong, J.-P. (2010). Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method. IEEE Transactions on Magnetics, 46(6), 2108–2111. https://doi.org/10.1109/TMAG.2010.2044871
  • Lee, S.-K., Kang, G.-H., Hur, J., & Kim, B.-W. (2012). Stator and rotor shape designs of interior permanent magnet type brushless DC motor for reducing torque fluctuation. IEEE Transactions on Magnetics, 48(11), 4662–4665. https://doi.org/10.1109/TMAG.2012.2201455
  • Li, Z., Fan, X., Kong, Q., Liu, J., & Zhang, S. (2024). Torque Ripple Suppression of BLDCM With Optimal Duty Cycle and Switch State by FCS-MPC. IEEE Open Journal of Power Electronics, 5(February), 381–391. https://doi.org/10.1109/OJPEL.2024.3368221
  • Lin, H., Wang, D., Liu, D., & Chen, J. (2014). Influence of magnet shape on torque behavior in surface-mounted permanent magnet motors. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 44–47. https://doi.org/10.1109/ICEMS.2014.7013448
  • Lipo, T. A. (2017). Intorduction to AC Machine Design. John Wiley & Sons Inc.
  • Liu, Y., Zhu, Z. Q., & Howe, D. (2005). Direct torque control of brushless DC drives with reduced torque ripple. IEEE Transactions on Industry Applications, 41(2), 599–608. https://doi.org/10.1109/TIA.2005.844853
  • Mohanraj, D., Aruldavid, R., Verma, R., Sathiyasekar, K., Barnawi, A. B., Chokkalingam, B., & Mihet-Popa, L. (2022). A Review of BLDC Motor: State of Art, Advanced Control Techniques, and Applications. IEEE Access, 10, 54833–54869. https://doi.org/10.1109/ACCESS.2022.3175011
  • Mohanraj, D., Gopalakrishnan, J., Chokkalingam, B., & Mihet-Popa, L. (2022). Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review. IEEE Access, 10(July), 73635–73674. https://doi.org/10.1109/ACCESS.2022.3187515
  • Park, J. H., & Lee, D. H. (2020). Simple Commutation Torque Ripple Reduction Using PWM with Compensation Voltage. IEEE Transactions on Industry Applications, 56(3), 2654–2662. https://doi.org/10.1109/TIA.2020.2968412
  • Prabhu, N., Thirumalaivasan, R., & Ashok, B. (2023). Critical Review on Torque Ripple Sources and Mitigation Control Strategies of BLDC Motors in Electric Vehicle Applications. IEEE Access, 11(October), 115699–115739. https://doi.org/10.1109/ACCESS.2023.3324419
  • Prakash, A., & Naveen, C. (2023). Combined strategy for tuning sensor-less brushless DC motor using SEPIC converter to reduce torque ripple. ISA Transactions, 133, 328–344. https://doi.org/10.1016/j.isatra.2022.06.045
  • Rahman, M. M., Kim, K.-T., & Hur, J. (2014). Design and Optimization of Neodymium-Free SPOKE-Type Motor With Segmented Wing-Shaped PM. IEEE Transactions on Magnetics, 50(2), 865–868. https://doi.org/10.1109/tmag.2013.2282151
  • Raja, M. S., & Geethalakshmi, B. (2018). Modified Rotor Material for Minimization of Torque Ripple for Interior Permanent Magnet BLDC motor. Materials Today: Proceedings, 5(2), 3639–3647. https://doi.org/10.1016/j.matpr.2017.11.614
  • Rupam, Marwaha, S., & Marwaha, A. (2022). FEA Based Design of Outer Rotor BLDC Motor for Battery Electric Vehicle. International Journal of Electrical and Electronics Research, 10(4), 1130–1134. https://doi.org/10.37391/ijeer.100459
  • Shi, T., Cao, Y., Jiang, G., Li, X., & Xia, C. (2017). A Torque Control Strategy for Torque Ripple Reduction of Brushless DC Motor with Nonideal Back Electromotive Force. IEEE Transactions on Industrial Electronics, 64(6), 4423–4433. https://doi.org/10.1109/TIE.2017.2674587
  • Tezcan, M. M., & Yetgin, A. G. (2023). An Approach For Reducing Torque Ripples on Permanent Magnet Synchronous Motors : Slitted Stator Core. Gazi Journal of Engineering Sciences, 9(2), 163–173. https://doi.org/10.30855/gmbd.0705061
  • Trivedi, M. S., & Keshri, R. K. (2020). Evaluation of Predictive Current Control Techniques for PM BLDC Motor in Stationary Plane. IEEE Access, 8, 46217–46228. https://doi.org/10.1109/ACCESS.2020.2978695
  • Wang, L., Zhu, Z. Q., Bin, H., & Gong, L. (2021). A Commutation Error Compensation Strategy for High-Speed Brushless DC Drive Based on Adaline Filter. IEEE Transactions on Industrial Electronics, 68(5), 3728–3738. https://doi.org/10.1109/TIE.2020.2984445
  • Xia, K., Ye, Y., Ni, J., Wang, Y., & Xu, P. (2020). Model predictive control method of torque ripple reduction for BLDC Motor. IEEE Transactions on Magnetics, 56(1), 1–6. https://doi.org/10.1109/TMAG.2019.2950953
  • Yao, X., Zhao, J., Wang, J., Huang, S., & Jiang, Y. (2019). Commutation Torque Ripple Reduction for Brushless DC Motor Based on an Auxiliary Step-Up Circuit. IEEE Access, 7, 138721–138731. https://doi.org/10.1109/ACCESS.2019.2943411
There are 24 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Research Articles
Authors

Emin Tarik Kartal 0000-0002-4966-7258

Fatma Keskin Arabul 0000-0002-9573-8440

Publication Date December 25, 2024
Submission Date August 31, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Kartal, E. T., & Keskin Arabul, F. (2024). EFFECTS OF ASYMMETRICAL STATOR STRUCTURE ON BLDC MOTOR PERFORMANCE FOR HOUSEHOLD APPLIANCES. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 663-675. https://doi.org/10.21923/jesd.1541595