Research Article
BibTex RIS Cite

HIGH-PERFORMANCE MICROSTRIP ANTENNA DESIGN FOR MULTIBAND APPLICATIONS

Year 2024, Volume: 12 Issue: 4, 866 - 875, 25.12.2024
https://doi.org/10.21923/jesd.1551368

Abstract

In this study, the design and optimization of multiband microstrip antennas used in wireless communication systems are addressed. Multiband antennas are critical components that enable devices to access different frequency bands, operating on various networks such as GSM, LTE, Wi-Fi, and 5G. However, designing these antennas is a challenging process that requires balancing conflicting parameters like antenna size and bandwidth while achieving high gain across a wide frequency range. In this context, the literature has proposed various innovative approaches, such as parasitic elements, fractal geometries, and loading elements, to improve antenna performance. In this study, a unique microstrip antenna design was developed using 3D simulations, and this design was compared with competing models from the literature. Additionally, the results demonstrate that the proposed antenna exhibits high electromagnetic performance characteristics.

References

  • Asghar, M. Z., Memon, S. A., & Hämäläinen, J. (2022). Evolution of wireless communication to 6g: Potential applications and research directions. Sustainability, 14(10), 6356. https://doi.org/10.3390/su14106356
  • Aboagye, S., Saeidi, M. A., Tabassum, H., Tayyar, Y., Hossain, E., Yang, H. C., & Alouini, M. S. (2024). Multi-band wireless communication networks: Fundamentals, challenges, and resource allocation. IEEE Transactions on Communications. DOI: 10.1109/TCOMM.2024.3366816
  • Arnaoutoglou, D. G., Empliouk, T. M., Kaifas, T. N., Chryssomallis, M. T., & Kyriacou, G. (2024). A Review of Multifunctional Antenna Designs for Internet of Things. Electronics, 13(16), 3200. https://doi.org/10.3390/electronics13163200
  • Aziz, Ahmed A. Abdel, Ali T. Abdel-Motagaly, Ahmed A. Ibrahim, Waleed MA El Rouby, and Mahmoud A. Abdalla. "A printed expanded graphite paper based dual band antenna for conformal wireless applications." AEU-International Journal of Electronics and Communications 110 (2019): 152869.
  • Bagheri, N., Teixeira, E., Velez, F. J., & Peha, J. M. (2024, June). Multi-Band Resonant Photonic Crystal Antenna for 5G Applications. In 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) (pp. 526-531). IEEE. DOI: 10.1109/MELECON56669.2024.10608697
  • Dwivedy, B., & Das, T. K. (2022). Introduction to fractal antennas and their role in MIMO applications. In Multifunctional MIMO Antennas: Fundamentals and Application (pp. 1-26). CRC Press.
  • Dubal, S., & Chaudhari, A. (2020, January). Mechanisms of reconfigurable antenna: A review. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 576-580). IEEE. DOI: 10.1109/Confluence47617.2020.9057998
  • Ding, Z. F., Shaoqiu, X., Liu, C., Tang, M. C., Zhang, C., & Wang, B. Z. (2015). Design of a broadband, wide-beam hollow cavity multilayer antenna for phased array applications. IEEE Antennas and Wireless Propagation Letters, 15, 1040-1043. DOI: 10.1109/LAWP.2015.2491180
  • Guo, Qianqian, Jingwei Zhang, Jiajia Zhu, and Dandan Yan. "A compact multiband dielectric resonator antenna for wireless communications." Microwave and Optical Technology Letters 62, no. 9 (2020): 2945-2952.
  • Gocen, C., Akdag, I., Mahouti, T., Belen, M. A., Palandöken, M., & Mahouti, P. (2024). Knowledge‐Based Methodology of CPW‐Fed Open Stub Loaded C‐Shaped Microstrip Antenna by Surrogate‐Based Modeling. International Journal of RF and Microwave Computer‐Aided Engineering, 2024(1), 6247693. https://doi.org/10.1155/2024/6247693
  • H Patel, D., & D Makwana, G. (2021). A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication. International Journal of Computing and Digital System. DOI: https://dx.doi.org/10.12785/ijcds/110177
  • Jin, P., & Ziolkowski, R. W. (2011). Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas. IEEE Transactions on Antennas and Propagation, 59(5), 1446-1459. DOI: 10.1109/TAP.2011.2123053
  • Khan, R., Al-Hadi, A. A., Soh, P. J., Kamarudin, M. R., & Ali, M. T. (2018). User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas. IEEE access, 6, 77695-77715. DOI: 10.1109/ACCESS.2018.2883788
  • Kannadhasan, S., Nagarajan, R., & Venusamy, K. (2022, April). Performance, Metrics, and Challenges of Multiband Antenna for Wireless Communication. In 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 478-481). IEEE. DOI: 10.1109/ICOEI53556.2022.9776735
  • Kulkarni, Jayshri, C. Y. D. Sim, A. K. Poddar, U. L. Rohde, and A. G. Alharbi. "A Compact circularly polarized rotated L-shaped antenna with J-shaped defected ground strucutre for wlan and V2X applications." Prog. Electromagn. Res. Lett 102 (2022): 135-143.
  • Kumar, Yatendra, Ravi Kumar Gangwar, and Binod Kumar Kanaujia. "Asymmetrical mirror imaged monopole antenna with modified ground structure for DBDP radiations." International Journal of Electronics 107, no. 4 (2020): 596-612.
  • Kumar, P., Ali, T., & Pai, M. M. (2021). Electromagnetic metamaterials: A new paradigm of antenna design. IEEE Access, 9, 18722-18751. DOI: 10.1109/ACCESS.2021.3053100
  • Kalis, A., Kanatas, A. G., & Papadias, C. B. (Eds.). (2014). Parasitic antenna arrays for wireless MIMO systems. New York: Springer. DOI 10.1007/978-1-4614-7999-4
  • Malik, P. K., Bilandi, N., & Gupta, A. (2022). Narrow band-IoT and long-range technology of IoT smart communication: Designs and challenges. Computers & Industrial Engineering, 172, 108572. https://doi.org/10.1016/j.cie.2022.108572
  • Mahouti, P., Kızılay, A., Tari, O., Belen, A., & Belen, M. A. (2021, August). Design optimization of ultra wide band vivaldi antenna using artificial intelligence. In 2021 International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-4). IEEE.
  • Makal, S., & Kizilay, A. (2011). Computation of the scattered fields from a dielectric object buried in a medium with a periodic surface by a decomposition method. IET microwaves, antennas & propagation, 5(14), 1703-1709. doi: 10.1049/iet-map.2011.0137
  • Muhammad, H. A., Abdulkarim, Y. I., Abdoul, P. A., Awl, H. N., Teksen, F. A., Özkan Alkurt, F. O., ... & Appasani, B. (2024). A highly flexible and low-profile metasurface antenna for wearable WBAN systems. Optik, 313, 171974. https://doi.org/10.1016/j.ijleo.2024.171974
  • Mohamadzade, B., Simorangkir, R. B., Maric, S., Lalbakhsh, A., Esselle, K. P., & Hashmi, R. M. (2020). Recent developments and state of the art in flexible and conformal reconfigurable antennas. Electronics, 9(9), 1375. https://doi.org/10.3390/electronics9091375
  • Narula, A. K., & Sappal, A. S. (2024). 21 MultibandDesign for Antenna Internet of Things (IoT) Applications. Robotics and Automation in Industry 4.0: Smart Industries and Intelligent Technologies, 362.
  • Oh, J., & Sarabandi, K. (2011). Low profile, miniaturized, inductively coupled capacitively loaded monopole antenna. IEEE Transactions on Antennas and Propagation, 60(3), 1206-1213.
  • Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H., Al-Yasir, Y. I., M. Abdulkhaleq, A., & A. Abd-Alhameed, R. (2020). Reconfigurable antennas: Switching techniques—A survey. Electronics, 9(2), 336. https://doi.org/10.3390/electronics9020336
  • Saraswat, R. K., & Kumar, M. (2020). Implementation of hybrid fractal metamaterial inspired frequency band reconfigurable multiband antenna for wireless applications. International Journal of RF and Microwave Computer‐Aided Engineering, 30(9), e22315. https://doi.org/10.1002/mmce.22315
  • Tesfaye, B. C., & Singh, R. P. Fractal Antenna for Wireless Applications: A Review. International Journal For Academic Research and Biradar, B. S., Swati V. Sankpal, and Mr Sachin Shivaji Taware." Designing of rectangular microstrip patch antenna for wireless communication at, 2
  • Ur Rehman, M., & Yang, X. (2018). Multiband antennas for LTE femtocells. LTE Communications and Networks: Femtocells and Antenna Design Challenges, 209-229. https://doi.org/10.1002/9781119385271.ch8
  • Vetrichelvi, G., Gowtham, P., Balaji, D., & Rajeshkumar, L. (2024). Functional metamaterials for wireless antenna applications–A review abetted with patent landscape analysis. Heliyon.
  • Zheng, J., Zhang, J., Du, H., Niyato, D., Sun, S., Ai, B., & Letaief, K. B. (2024). Flexible-position MIMO for wireless communications: Fundamentals, challenges, and future directions. IEEE Wireless Communications. DOI: 10.1109/MWC.011.2300428

ÇOK BANDLI UYGULAMALAR İÇİN YÜKSEK PERFORMANSLI MİKROŞERİT ANTEN TASARIMI

Year 2024, Volume: 12 Issue: 4, 866 - 875, 25.12.2024
https://doi.org/10.21923/jesd.1551368

Abstract

Bu çalışmada, kablosuz iletişim sistemlerinde kullanılan çok bandlı mikroşerit antenlerin tasarımı ve optimizasyonu ele alınmıştır. Çok bandlı antenler, GSM, LTE, Wi-Fi ve 5G gibi farklı ağlar üzerinde çalışabilen, cihazların farklı frekans bandlarına erişimini sağlayan kritik bileşenlerdir. Ancak, bu antenlerin tasarımı, geniş bir frekans aralığında yüksek kazanç sağlarken, anten boyutu ve band genişliği gibi çeşitli parametreleri dengelemeyi gerektiren zorlu bir süreçtir. Bu nedenle, literatürde anten performansını iyileştirmek amacıyla parazitik elemanlar, fraktal yapılar ve metamalzemeler gibi çeşitli yenilikçi yaklaşımlar önerilmiştir. Çalışmada, 3B simülasyon programı kullanılarak özgün bir mikroşerit anten tasarımı gerçekleştirilmiş ve literatürdeki rakip modellerle kıyaslanmıştır. Elde edilen sonuçlar, önerilen antenin yüksek elektromanyetik performans karakteristiklerine sahip olduğunu göstermektedir.

References

  • Asghar, M. Z., Memon, S. A., & Hämäläinen, J. (2022). Evolution of wireless communication to 6g: Potential applications and research directions. Sustainability, 14(10), 6356. https://doi.org/10.3390/su14106356
  • Aboagye, S., Saeidi, M. A., Tabassum, H., Tayyar, Y., Hossain, E., Yang, H. C., & Alouini, M. S. (2024). Multi-band wireless communication networks: Fundamentals, challenges, and resource allocation. IEEE Transactions on Communications. DOI: 10.1109/TCOMM.2024.3366816
  • Arnaoutoglou, D. G., Empliouk, T. M., Kaifas, T. N., Chryssomallis, M. T., & Kyriacou, G. (2024). A Review of Multifunctional Antenna Designs for Internet of Things. Electronics, 13(16), 3200. https://doi.org/10.3390/electronics13163200
  • Aziz, Ahmed A. Abdel, Ali T. Abdel-Motagaly, Ahmed A. Ibrahim, Waleed MA El Rouby, and Mahmoud A. Abdalla. "A printed expanded graphite paper based dual band antenna for conformal wireless applications." AEU-International Journal of Electronics and Communications 110 (2019): 152869.
  • Bagheri, N., Teixeira, E., Velez, F. J., & Peha, J. M. (2024, June). Multi-Band Resonant Photonic Crystal Antenna for 5G Applications. In 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) (pp. 526-531). IEEE. DOI: 10.1109/MELECON56669.2024.10608697
  • Dwivedy, B., & Das, T. K. (2022). Introduction to fractal antennas and their role in MIMO applications. In Multifunctional MIMO Antennas: Fundamentals and Application (pp. 1-26). CRC Press.
  • Dubal, S., & Chaudhari, A. (2020, January). Mechanisms of reconfigurable antenna: A review. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 576-580). IEEE. DOI: 10.1109/Confluence47617.2020.9057998
  • Ding, Z. F., Shaoqiu, X., Liu, C., Tang, M. C., Zhang, C., & Wang, B. Z. (2015). Design of a broadband, wide-beam hollow cavity multilayer antenna for phased array applications. IEEE Antennas and Wireless Propagation Letters, 15, 1040-1043. DOI: 10.1109/LAWP.2015.2491180
  • Guo, Qianqian, Jingwei Zhang, Jiajia Zhu, and Dandan Yan. "A compact multiband dielectric resonator antenna for wireless communications." Microwave and Optical Technology Letters 62, no. 9 (2020): 2945-2952.
  • Gocen, C., Akdag, I., Mahouti, T., Belen, M. A., Palandöken, M., & Mahouti, P. (2024). Knowledge‐Based Methodology of CPW‐Fed Open Stub Loaded C‐Shaped Microstrip Antenna by Surrogate‐Based Modeling. International Journal of RF and Microwave Computer‐Aided Engineering, 2024(1), 6247693. https://doi.org/10.1155/2024/6247693
  • H Patel, D., & D Makwana, G. (2021). A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication. International Journal of Computing and Digital System. DOI: https://dx.doi.org/10.12785/ijcds/110177
  • Jin, P., & Ziolkowski, R. W. (2011). Multi-frequency, linear and circular polarized, metamaterial-inspired, near-field resonant parasitic antennas. IEEE Transactions on Antennas and Propagation, 59(5), 1446-1459. DOI: 10.1109/TAP.2011.2123053
  • Khan, R., Al-Hadi, A. A., Soh, P. J., Kamarudin, M. R., & Ali, M. T. (2018). User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas. IEEE access, 6, 77695-77715. DOI: 10.1109/ACCESS.2018.2883788
  • Kannadhasan, S., Nagarajan, R., & Venusamy, K. (2022, April). Performance, Metrics, and Challenges of Multiband Antenna for Wireless Communication. In 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 478-481). IEEE. DOI: 10.1109/ICOEI53556.2022.9776735
  • Kulkarni, Jayshri, C. Y. D. Sim, A. K. Poddar, U. L. Rohde, and A. G. Alharbi. "A Compact circularly polarized rotated L-shaped antenna with J-shaped defected ground strucutre for wlan and V2X applications." Prog. Electromagn. Res. Lett 102 (2022): 135-143.
  • Kumar, Yatendra, Ravi Kumar Gangwar, and Binod Kumar Kanaujia. "Asymmetrical mirror imaged monopole antenna with modified ground structure for DBDP radiations." International Journal of Electronics 107, no. 4 (2020): 596-612.
  • Kumar, P., Ali, T., & Pai, M. M. (2021). Electromagnetic metamaterials: A new paradigm of antenna design. IEEE Access, 9, 18722-18751. DOI: 10.1109/ACCESS.2021.3053100
  • Kalis, A., Kanatas, A. G., & Papadias, C. B. (Eds.). (2014). Parasitic antenna arrays for wireless MIMO systems. New York: Springer. DOI 10.1007/978-1-4614-7999-4
  • Malik, P. K., Bilandi, N., & Gupta, A. (2022). Narrow band-IoT and long-range technology of IoT smart communication: Designs and challenges. Computers & Industrial Engineering, 172, 108572. https://doi.org/10.1016/j.cie.2022.108572
  • Mahouti, P., Kızılay, A., Tari, O., Belen, A., & Belen, M. A. (2021, August). Design optimization of ultra wide band vivaldi antenna using artificial intelligence. In 2021 International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-4). IEEE.
  • Makal, S., & Kizilay, A. (2011). Computation of the scattered fields from a dielectric object buried in a medium with a periodic surface by a decomposition method. IET microwaves, antennas & propagation, 5(14), 1703-1709. doi: 10.1049/iet-map.2011.0137
  • Muhammad, H. A., Abdulkarim, Y. I., Abdoul, P. A., Awl, H. N., Teksen, F. A., Özkan Alkurt, F. O., ... & Appasani, B. (2024). A highly flexible and low-profile metasurface antenna for wearable WBAN systems. Optik, 313, 171974. https://doi.org/10.1016/j.ijleo.2024.171974
  • Mohamadzade, B., Simorangkir, R. B., Maric, S., Lalbakhsh, A., Esselle, K. P., & Hashmi, R. M. (2020). Recent developments and state of the art in flexible and conformal reconfigurable antennas. Electronics, 9(9), 1375. https://doi.org/10.3390/electronics9091375
  • Narula, A. K., & Sappal, A. S. (2024). 21 MultibandDesign for Antenna Internet of Things (IoT) Applications. Robotics and Automation in Industry 4.0: Smart Industries and Intelligent Technologies, 362.
  • Oh, J., & Sarabandi, K. (2011). Low profile, miniaturized, inductively coupled capacitively loaded monopole antenna. IEEE Transactions on Antennas and Propagation, 60(3), 1206-1213.
  • Ojaroudi Parchin, N., Jahanbakhsh Basherlou, H., Al-Yasir, Y. I., M. Abdulkhaleq, A., & A. Abd-Alhameed, R. (2020). Reconfigurable antennas: Switching techniques—A survey. Electronics, 9(2), 336. https://doi.org/10.3390/electronics9020336
  • Saraswat, R. K., & Kumar, M. (2020). Implementation of hybrid fractal metamaterial inspired frequency band reconfigurable multiband antenna for wireless applications. International Journal of RF and Microwave Computer‐Aided Engineering, 30(9), e22315. https://doi.org/10.1002/mmce.22315
  • Tesfaye, B. C., & Singh, R. P. Fractal Antenna for Wireless Applications: A Review. International Journal For Academic Research and Biradar, B. S., Swati V. Sankpal, and Mr Sachin Shivaji Taware." Designing of rectangular microstrip patch antenna for wireless communication at, 2
  • Ur Rehman, M., & Yang, X. (2018). Multiband antennas for LTE femtocells. LTE Communications and Networks: Femtocells and Antenna Design Challenges, 209-229. https://doi.org/10.1002/9781119385271.ch8
  • Vetrichelvi, G., Gowtham, P., Balaji, D., & Rajeshkumar, L. (2024). Functional metamaterials for wireless antenna applications–A review abetted with patent landscape analysis. Heliyon.
  • Zheng, J., Zhang, J., Du, H., Niyato, D., Sun, S., Ai, B., & Letaief, K. B. (2024). Flexible-position MIMO for wireless communications: Fundamentals, challenges, and future directions. IEEE Wireless Communications. DOI: 10.1109/MWC.011.2300428
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics, Radio Frequency Engineering
Journal Section Research Articles
Authors

Mehmet Ali Belen 0000-0001-5588-9407

Publication Date December 25, 2024
Submission Date September 18, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Belen, M. A. (2024). ÇOK BANDLI UYGULAMALAR İÇİN YÜKSEK PERFORMANSLI MİKROŞERİT ANTEN TASARIMI. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 866-875. https://doi.org/10.21923/jesd.1551368