Research Article
BibTex RIS Cite

SENKRON RELÜKTANS MOTORDA SARGI TİPLERİNİN VE ROTOR YAPISININ PERFORMANS KARŞILAŞTIRMASI

Year 2024, Volume: 12 Issue: 4, 835 - 847, 25.12.2024
https://doi.org/10.21923/jesd.1558750

Abstract

Senkron Relüktans Motorlar (SRM'ler) basit yapıları, yüksek verimlilikleri ve nadir toprak mıknatıslarına ihtiyaç duymamaları nedeniyle son yıllarda büyük ilgi görmektedir. SRM'ler, manyetik akıyı rotor içindeki bariyerler aracılığıyla yönlendirerek moment üretir ve bu da onları düşük maliyetli bir alternatif haline getirir. Motorun performansı, stator sargılarının ve rotor bariyerlerinin tasarımına bağlı olarak önemli ölçüde değişebilir. Stator sargı tiplerinin farklı kombinasyonları ve rotor bariyerlerinin sayısı, motorun moment, verimlilik, moment dalgalanması, çıkış gücü, çıkıklık oranı ve bakır tüketimi gibi kritik performans parametrelerini doğrudan etkiler. Bu çalışmada, altı farklı stator sargı tipi ve iki farklı rotor bariyer yapısı (3 ve 4 bariyer) kullanan SRM'ler analiz edilmiştir. Çıkış gücü, verim, moment, moment dalgalanması, çıkıklık oranı, akım faz açısına bağlı d ve q eksen endüktansları, kayıplar ve bakır tüketimi incelenmiştir. Sargı yapılarındaki tam adımlı ve kısaltılmış adımlı konfigürasyonların performans üzerindeki etkisi karşılaştırmalı olarak tartışılmıştır. Ayrıca 3 ve 4 bariyerli rotorların bu parametreler üzerindeki etkisi de değerlendirilmiştir. Bu analizler, motor tasarımında sargı ve rotor konfigürasyonlarının performansı optimize etmek için nasıl kullanılabileceğini ortaya koymayı amaçlamaktadır. SRM'ler çeşitli endüstriyel uygulamalarda enerji verimliliği ve maliyet avantajları sağlayabilir, bu nedenle uygun konfigürasyonun seçilmesi hem ekonomik hem de performans açısından büyük önem taşımaktadır.

References

  • Artetxe, G., Paredes, J., Prieto, B., Martinez-Iturralde, M., & Elosegui, I. (2018). Optimal pole number and winding designs for low speed-high torque synchronous reluctance machines. Energies, 11(1). https://doi.org/10.3390/en11010128
  • Babetto, C., Bacco, G., & Bianchi, N. (2018). Synchronous Reluctance Machine Optimization for High-Speed Applications. IEEE Transactions on Energy Conversion, 33(3), 1266–1273. https://doi.org/10.1109/TEC.2018.2800536
  • Babetto, C., Bacco, G., & Bianchi, N. (2019). Analytical Power Limits Curves of High-Speed Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 55(2), 1342–1350. https://doi.org/10.1109/TIA.2018.2875663
  • Bacco, G., & Bianchi, N. (2018). Asymmetric Synchronous Reluctance Rotor Geometry Design: A Practical Approach. 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, 5414–5421. https://doi.org/10.1109/ECCE.2018.8558213
  • Bianchi, N., Degano, M., & Fornasiero, E. (2013). Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 1842–1849. https://doi.org/10.1109/ECCE.2013.6646932
  • Boroujeni, S. T., Haghparast, M., & Bianchi, N. (2015). Optimization of flux barriers of line-start synchronous reluctance motors for transient- and steady-state operation. Electric Power Components and Systems, 43(5), 594–606. https://doi.org/10.1080/15325008.2014.984819
  • Castagnaro, E., Bacco, G., & Bianchi, N. (2019). Impact of Geometry on the Rotor Iron Losses in Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 55(6), 5865–5872. https://doi.org/10.1109/TIA.2019.2939508
  • Ferrari, M., Bianchi, N., & Fornasiero, E. (2015). Analysis of rotor saturation in synchronous reluctance and PM-assisted reluctance motors. IEEE Transactions on Industry Applications, 51(1), 169–177. https://doi.org/10.1109/TIA.2014.2326056
  • Grace, K., Galioto, S., Bodla, K., & El-Refaie, A. M. (2018). Design and Testing of a Carbon-Fiber-Wrapped Synchronous Reluctance Traction Motor. IEEE Transactions on Industry Applications, 54(5), 4207–4217. https://doi.org/10.1109/TIA.2018.2836966
  • Huang, L., Zhu, Z. Q., Feng, J., Guo, S., Shi, J. X., & Chu, W. (2019). Analysis of Stator/Rotor Pole Combinations in Variable Flux Reluctance Machines Using Magnetic Gearing Effect. IEEE Transactions on Industry Applications, 55(2), 1495–1504. https://doi.org/10.1109/TIA.2018.2883608
  • Ibrahim, M. N. F., Abdel-Khalik, A. S., Rashad, E. M., & Sergeant, P. (2018). An Improved Torque Density Synchronous Reluctance Machine With a Combined Star-Delta Winding Layout. IEEE Transactions on Energy Conversion, 33(3), 1015–1024. https://doi.org/10.1109/TEC.2017.2782777
  • Ibrahim, M. N. F., Rashad, E., & Sergeant, P. (2017). Performance comparison of conventional synchronous reluctance machines and PM-assisted types with combined star-delta winding. Energies, 10(10). https://doi.org/10.3390/en10101500
  • Kabir, M. A., & Husain, I. (2018). Application of a Multilayer AC Winding to Design Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 54(6), 5941–5953. https://doi.org/10.1109/TIA.2018.2859033
  • Kartal, E. T., & Keskin Arabul, F. (2022a). A Comparison between IM and IPMSM with Same Stator Core for EV and Performance Analysis of IPMSM. European Journal of Science and Technology, 38, 165–172. https://doi.org/10.31590/ejosat.1108129
  • Kartal, E. T., & Keskin Arabul, F. (2022b). Effects of Stator Winding Types and Rotor Slot Geometries on Motor Performance of an Induction Motor for an Electric Vehicle. 9th International Congress on Engineering, Architecture and Design, 269–276.
  • Kartal, E. T., & Keskin Arabul, F. (2024). Effects of air gap eccentricity on different rotor structures for PMSM in electric vehicles. Scientific Reports, 14(1), 1–23. https://doi.org/10.1038/s41598-024-68632-z
  • Liu, C.-T., Luo, T.-Y., Hwang, C.-C., & Chang, B.-Y. (2015). Field Path Design Assessments of a High-Performance Small-Power Synchronous-Reluctance Motor. IEEE Transactions on Magnetics, 51(11). https://doi.org/10.1109/TMAG.2015.2443831
  • Liu, H., Joo, K. J., Oh, Y. J., Lee, H. J., Seol, H. S., Jin, C. S. J., Kim, W. H., & Lee, J. (2018). Optimal Design of an Ultra-Premium-Efficiency PMA-Synchronous Reluctance Motor with the Winding Method and Stator Parameters to Reduce Flux Leakage and Minimize Torque Pulsations. IEEE Transactions on Magnetics, 54(11). https://doi.org/10.1109/TMAG.2018.2846880
  • Muteba, M. (2019). Influence of Mixed Stator Winding Configurations and Number of Rotor Flux-Barriers on Torque and Torque Ripple of Five-Phase Synchronous Reluctance Motors. ITEC 2019 - 2019 IEEE Transportation Electrification Conference and Expo. https://doi.org/10.1109/ITEC.2019.8790614
  • Naeimi, M., Nasiri-Zarandi, R., & Abbaszadeh, K. (2023). C- and circular-shaped barriers optimization in a synchronous reluctance rotor for torque ripples minimization. Scientia Iranica, 30(3 D), 1085–1096. https://doi.org/10.24200/sci.2021.57254.5140
  • Reddy, P. B., Grace, K., & El-Refaie, A. (2016). Conceptual design of sleeve rotor synchronous reluctance motor for traction applications. Proceedings - 2015 IEEE International Electric Machines and Drives Conference, IEMDC 2015, 195–201. https://doi.org/10.1109/IEMDC.2015.7409059
  • Rezk, H., Tawfiq, K. B., Sergeant, P., & Ibrahim, M. N. (2021). Optimal rotor design of synchronous reluctance machines considering the effect of current angle. Mathematics, 9(4), 1–18. https://doi.org/10.3390/math9040344
  • Sivaramkrishnan, M., Ramkumar, M. S., Subramanian S, S., & Ladu, N. S. D. (2022). A Bridgeless LUO Converter with Glowworm Swarm Optimized Tuned PI Controller for Electrical Applications. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/2401261
  • Tawfiq, K. B., Ibrahim, M. N., El-Kholy, E. E., & Sergeant, P. (2020). Performance Improvement of Existing Three Phase Synchronous Reluctance Machine: Stator Upgrading to 5-Phase with Combined Star-Pentagon Winding. IEEE Access, 8, 143569–143583. https://doi.org/10.1109/ACCESS.2020.3014498
  • Tawfiq, K. B., Ibrahim, M. N., El-Kholy, E. E., & Sergeant, P. (2022). Performance Analysis of a Rewound Multiphase Synchronous Reluctance Machine. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(1), 297–309. https://doi.org/10.1109/JESTPE.2021.3106591
  • Wang, K., Zhu, Z. Q., Ombach, G., Koch, M., Zhang, S., & Xu, J. (2015). Torque ripple reduction of synchronous reluctance machines: Optimal slot/pole and flux-barrier layer number combinations. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 34(1), 3–17. https://doi.org/10.1108/COMPEL-11-2013-0366
  • Xu, M., Liu, G., Chen, Q., & Zhao, W. (2019). Design and Key Technology Development of Permanent Magnet Assisted Synchronous Reluctance Motor. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 39(23), 7033–7043. https://doi.org/10.13334/j.0258-8013.pcsee.182323

PERFORMANCE COMPARISON OF WINDING TYPES AND ROTOR STRUCTURE IN SYNCHRONOUS RELUCTANCE MOTOR

Year 2024, Volume: 12 Issue: 4, 835 - 847, 25.12.2024
https://doi.org/10.21923/jesd.1558750

Abstract

Synchronous Reluctance Motors (SynRMs) have attracted a lot of attention in recent years due to their simple construction, high efficiency and the fact that they do not require rare earth magnets. SynRMs produce torque by directing the magnetic flux through barriers in the rotor, making them a low-cost alternative. The performance of the motor can vary significantly depending on the design of the stator windings and rotor barriers. Different combinations of stator winding types and the number of rotor barriers directly affect the critical performance parameters of the motor such as torque, efficiency, torque ripple, output power, saliency ratio and copper consumption. In this study, SynRMs using six different stator winding types and two different rotor barrier structures (3 and 4 barriers) are analyzed. Output power, efficiency, torque, torque ripple, saliency ratio, d-q axis inductances depending on current phase angle, total losses and copper consumption are investigated. The effect of full pitch and shortened pitch configurations in winding structures on the performance is discussed comparatively. The effect of 3 and 4 barrier rotors on these parameters is also evaluated. These analyses aim to reveal the ways in which winding and rotor configurations in motor design can be used to optimize performance. SynRMs can provide energy efficiency and cost benefits in a variety of industrial applications, therefore selecting the proper configuration is of great importance from both an economic and performance perspective.

References

  • Artetxe, G., Paredes, J., Prieto, B., Martinez-Iturralde, M., & Elosegui, I. (2018). Optimal pole number and winding designs for low speed-high torque synchronous reluctance machines. Energies, 11(1). https://doi.org/10.3390/en11010128
  • Babetto, C., Bacco, G., & Bianchi, N. (2018). Synchronous Reluctance Machine Optimization for High-Speed Applications. IEEE Transactions on Energy Conversion, 33(3), 1266–1273. https://doi.org/10.1109/TEC.2018.2800536
  • Babetto, C., Bacco, G., & Bianchi, N. (2019). Analytical Power Limits Curves of High-Speed Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 55(2), 1342–1350. https://doi.org/10.1109/TIA.2018.2875663
  • Bacco, G., & Bianchi, N. (2018). Asymmetric Synchronous Reluctance Rotor Geometry Design: A Practical Approach. 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, 5414–5421. https://doi.org/10.1109/ECCE.2018.8558213
  • Bianchi, N., Degano, M., & Fornasiero, E. (2013). Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors. 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, 1842–1849. https://doi.org/10.1109/ECCE.2013.6646932
  • Boroujeni, S. T., Haghparast, M., & Bianchi, N. (2015). Optimization of flux barriers of line-start synchronous reluctance motors for transient- and steady-state operation. Electric Power Components and Systems, 43(5), 594–606. https://doi.org/10.1080/15325008.2014.984819
  • Castagnaro, E., Bacco, G., & Bianchi, N. (2019). Impact of Geometry on the Rotor Iron Losses in Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 55(6), 5865–5872. https://doi.org/10.1109/TIA.2019.2939508
  • Ferrari, M., Bianchi, N., & Fornasiero, E. (2015). Analysis of rotor saturation in synchronous reluctance and PM-assisted reluctance motors. IEEE Transactions on Industry Applications, 51(1), 169–177. https://doi.org/10.1109/TIA.2014.2326056
  • Grace, K., Galioto, S., Bodla, K., & El-Refaie, A. M. (2018). Design and Testing of a Carbon-Fiber-Wrapped Synchronous Reluctance Traction Motor. IEEE Transactions on Industry Applications, 54(5), 4207–4217. https://doi.org/10.1109/TIA.2018.2836966
  • Huang, L., Zhu, Z. Q., Feng, J., Guo, S., Shi, J. X., & Chu, W. (2019). Analysis of Stator/Rotor Pole Combinations in Variable Flux Reluctance Machines Using Magnetic Gearing Effect. IEEE Transactions on Industry Applications, 55(2), 1495–1504. https://doi.org/10.1109/TIA.2018.2883608
  • Ibrahim, M. N. F., Abdel-Khalik, A. S., Rashad, E. M., & Sergeant, P. (2018). An Improved Torque Density Synchronous Reluctance Machine With a Combined Star-Delta Winding Layout. IEEE Transactions on Energy Conversion, 33(3), 1015–1024. https://doi.org/10.1109/TEC.2017.2782777
  • Ibrahim, M. N. F., Rashad, E., & Sergeant, P. (2017). Performance comparison of conventional synchronous reluctance machines and PM-assisted types with combined star-delta winding. Energies, 10(10). https://doi.org/10.3390/en10101500
  • Kabir, M. A., & Husain, I. (2018). Application of a Multilayer AC Winding to Design Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 54(6), 5941–5953. https://doi.org/10.1109/TIA.2018.2859033
  • Kartal, E. T., & Keskin Arabul, F. (2022a). A Comparison between IM and IPMSM with Same Stator Core for EV and Performance Analysis of IPMSM. European Journal of Science and Technology, 38, 165–172. https://doi.org/10.31590/ejosat.1108129
  • Kartal, E. T., & Keskin Arabul, F. (2022b). Effects of Stator Winding Types and Rotor Slot Geometries on Motor Performance of an Induction Motor for an Electric Vehicle. 9th International Congress on Engineering, Architecture and Design, 269–276.
  • Kartal, E. T., & Keskin Arabul, F. (2024). Effects of air gap eccentricity on different rotor structures for PMSM in electric vehicles. Scientific Reports, 14(1), 1–23. https://doi.org/10.1038/s41598-024-68632-z
  • Liu, C.-T., Luo, T.-Y., Hwang, C.-C., & Chang, B.-Y. (2015). Field Path Design Assessments of a High-Performance Small-Power Synchronous-Reluctance Motor. IEEE Transactions on Magnetics, 51(11). https://doi.org/10.1109/TMAG.2015.2443831
  • Liu, H., Joo, K. J., Oh, Y. J., Lee, H. J., Seol, H. S., Jin, C. S. J., Kim, W. H., & Lee, J. (2018). Optimal Design of an Ultra-Premium-Efficiency PMA-Synchronous Reluctance Motor with the Winding Method and Stator Parameters to Reduce Flux Leakage and Minimize Torque Pulsations. IEEE Transactions on Magnetics, 54(11). https://doi.org/10.1109/TMAG.2018.2846880
  • Muteba, M. (2019). Influence of Mixed Stator Winding Configurations and Number of Rotor Flux-Barriers on Torque and Torque Ripple of Five-Phase Synchronous Reluctance Motors. ITEC 2019 - 2019 IEEE Transportation Electrification Conference and Expo. https://doi.org/10.1109/ITEC.2019.8790614
  • Naeimi, M., Nasiri-Zarandi, R., & Abbaszadeh, K. (2023). C- and circular-shaped barriers optimization in a synchronous reluctance rotor for torque ripples minimization. Scientia Iranica, 30(3 D), 1085–1096. https://doi.org/10.24200/sci.2021.57254.5140
  • Reddy, P. B., Grace, K., & El-Refaie, A. (2016). Conceptual design of sleeve rotor synchronous reluctance motor for traction applications. Proceedings - 2015 IEEE International Electric Machines and Drives Conference, IEMDC 2015, 195–201. https://doi.org/10.1109/IEMDC.2015.7409059
  • Rezk, H., Tawfiq, K. B., Sergeant, P., & Ibrahim, M. N. (2021). Optimal rotor design of synchronous reluctance machines considering the effect of current angle. Mathematics, 9(4), 1–18. https://doi.org/10.3390/math9040344
  • Sivaramkrishnan, M., Ramkumar, M. S., Subramanian S, S., & Ladu, N. S. D. (2022). A Bridgeless LUO Converter with Glowworm Swarm Optimized Tuned PI Controller for Electrical Applications. Mathematical Problems in Engineering, 2022. https://doi.org/10.1155/2022/2401261
  • Tawfiq, K. B., Ibrahim, M. N., El-Kholy, E. E., & Sergeant, P. (2020). Performance Improvement of Existing Three Phase Synchronous Reluctance Machine: Stator Upgrading to 5-Phase with Combined Star-Pentagon Winding. IEEE Access, 8, 143569–143583. https://doi.org/10.1109/ACCESS.2020.3014498
  • Tawfiq, K. B., Ibrahim, M. N., El-Kholy, E. E., & Sergeant, P. (2022). Performance Analysis of a Rewound Multiphase Synchronous Reluctance Machine. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(1), 297–309. https://doi.org/10.1109/JESTPE.2021.3106591
  • Wang, K., Zhu, Z. Q., Ombach, G., Koch, M., Zhang, S., & Xu, J. (2015). Torque ripple reduction of synchronous reluctance machines: Optimal slot/pole and flux-barrier layer number combinations. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 34(1), 3–17. https://doi.org/10.1108/COMPEL-11-2013-0366
  • Xu, M., Liu, G., Chen, Q., & Zhao, W. (2019). Design and Key Technology Development of Permanent Magnet Assisted Synchronous Reluctance Motor. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 39(23), 7033–7043. https://doi.org/10.13334/j.0258-8013.pcsee.182323
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Research Articles
Authors

Emin Tarik Kartal 0000-0002-4966-7258

Fatma Keskin Arabul 0000-0002-9573-8440

Publication Date December 25, 2024
Submission Date September 30, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Kartal, E. T., & Keskin Arabul, F. (2024). PERFORMANCE COMPARISON OF WINDING TYPES AND ROTOR STRUCTURE IN SYNCHRONOUS RELUCTANCE MOTOR. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 835-847. https://doi.org/10.21923/jesd.1558750