Research Article
BibTex RIS Cite

METİLEN MAVİSİ BOYAR MADDESİNİN SENTETİK ATIKSULARDAN Cu-Alg HİDROJEL BONCUKLAR KULLANILARAK UZAKLAŞTIRILMASI

Year 2024, Volume: 12 Issue: 4, 765 - 778, 25.12.2024
https://doi.org/10.21923/jesd.1560542

Abstract

Son zamanlarda su kirliliğinde meydana gelen artış, artan çevresel endişeleri de beraberinde getirmektedir. Bu nedenle kirleticilerin sulardan uzaklaştırılması hem çevresel hem de insan sağlığı açısından gün geçtikçe önem kazanmaktadır. Kirleticilerin sulardan uzaklaştırılması için uygulaması kolay ve düşük maliyetli bir yöntem olan adsorpsiyon prosesi yoğun olarak kullanılmaktadır. Adsorpsiyon prosesinde kullanılacak adsorbanların tasarımı ve geliştirilmesi ise araştırmacılar arasında büyük ilgi görmektedir. Bu adsorbanlardan biri de aljinat bazlı hidrojel boncuklardır. Bu çalışmada bakır (II) iyonları ile çapraz bağlanarak elde edilen aljinat hidrojel boncuklar metilen mavisinin sudan uzaklaştırılması için kullanılmıştır. Sodyum aljinat ile bakır (II) iyonları çapraz bağlanarak Cu-Alg adı verilen aljinat hidrojel boncuklar sentezlenmiş ve FTIR ile karakterize edilmiştir. Cu-Alg adsorban olarak kullanılarak kesikli adsorpsiyon prosesi ile metilen mavisinin sudan uzaklaştırılmasına adsorban dozu, pH, sıcaklık, temas süresi ve boya konsantrasyonunun etkisi araştırılmıştır. Denemeler sonucunda 0,1 g/50 mL adsorban dozu, 12 pH seviyesi, 30°C sıcaklık, 120 dakika temas süresi ve 10 mg/L metilen mavisi konsantrasyonu optimum koşullar olarak belirlenmiştir. Bu koşullarda, maksimum metilen mavisi giderimi %90,07 olmuştur. Ek olarak, çeşitli kinetik izoterm modelleri kullanılarak Cu-Alg hidrojel boncuklar üzerine metilen mavisi adsorpsiyonunun kemisorpsiyon ve fizisorpsiyon yoluyla gerçekleştiği gösterilmiştir. Termodinamik analiz ile adsorpsiyon sürecinin ekzotermik ve spontan bir yapı sergilediği ortaya konulmuştur.

Thanks

Laboratuvar imkanlarından yararlandığımız Aksaray Üniversitesi Çevre Mühendisliği Bölümü'ne ve Aksaray Üniversitesi Bilimsel ve Teknolojik Araştırma ve Uygulama Merkezi’ ne teşekkür ederiz.

References

  • Ahmad, T., Danish, M., 2022. A review of Avocado Waste-Derived Adsorbents: Characterizations, Adsorption Characteristics, and Surface Mechanism. Chemosphere, 296, 134036.
  • Al-Ghouti, M. A., Da'ana, D. A., 2020. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A review. Journal of Hazardous Materials, 393, 122383.
  • Alhussain, H., et al., 2024. Purification of RhB Dye from Aquatic Media via CaO-TiO2@ g-C3N4 Nanocomposite. Inorganic Chemistry Communications, 159, 111785.
  • Ali, J., et al., 2022. A New Biosource for Synthesis of Activated Carbon and Its Potential Use for Removal of Methylene Blue and Eriochrome Black T from Aqueous Solutions, Industrial Crops and Products. 179, 114676.
  • Bahsis, L., et al., 2020. Cu (ii)-alginate-based Superporous Hydrogel Catalyst for Click Chemistry azide–alkyne Cycloaddition Type Reactions in Water. RSC Advances, 10, 32821-32832.
  • Chan, L., et al., 2002. Cross-linking Mechanisms of Calcium and Zinc in Production of Alginate Microspheres. International Journal of Pharmaceutics, 242, 255-258.
  • Cheng, J., et al., 2020. Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine. ACS Omega, 5, 5389-5400.
  • Contreras, M., et al., 2019. Bio-removal of Methylene Blue from Aqueous Solution by Galactomyces Geotrichum KL20A. Water, 11, 282.
  • Eghbalifam, N., et al., 2015. Antibacterial Silver Nanoparticles in Polyvinyl Alcohol/Sodium Alginate Blend Produced by Gamma Irradiation. International Journal of Biological Macromolecules, 80, 170-176.
  • Eltaweil, A. S., et al., 2021. Highly Efficient Removal for Methylene Blue and Cu2+ onto UiO-66 Metal-Organic Framework/Carboxylated Graphene Oxide-Incorporated Sodium Alginate Beads. ACS Omega, 6, 23528-23541.
  • Fernandes, A. N., et al., 2010. Isotherm and Thermodynamic Data of Adsorption of Methylene Blue from Aqueous Solution onto Peat. Journal of Molecular Structure, 982, 62-65.
  • Gunay Gurer, A., et al., 2021. Adsorption Isotherms, Thermodynamics, and Kinetic Modeling of Methylene Blue onto Novel Carbonaceous Adsorbent Derived from Bitter Orange Peels. Water, Air, & Soil Pollution, 232, 1-17.
  • Jiang, D., et al., 2023. A Mechanism Study of Methylene Blue Adsorption on Seaweed Biomass Derived Carbon: From Macroscopic to Microscopic Scale. Process Safety and Environmental Protection, 172, 1132-1143.
  • Karthiga Devi, G., vd., 2016. Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: prediction of isotherm and kinetic parameters. Desalination and Water Treatment. 57, 27686-27699.
  • Kaur, Y., et al., 2021. Adsorptive Removal of Eriochrome Black T (EBT) Dye by Using Surface Active Low Cost Zinc Oxide Nanoparticles: A Comparative Overview. Chemosphere, 278, 130366.
  • Kavci, E., et al., 2023. Removal of Methylene Blue Dye from Aqueous Solution Using Citric Acid Modified Apricot Stone. Chemical Engineering Communications, 210, 165-180.
  • Khan, I., et al., 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14, 242.
  • Lee, S. J., vd., 2020. Seawater Desalination Using MOF-Incorporated Cu-Based Alginate Beads Without Energy Consumption. ACS Applied Materials & Interfaces. 12, 16319-16326.
  • Li, X., et al., 2019. Adsorption Behaviour of Eriochrome Black T from Water onto a Cross-Linked β-cyclodextrin Polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 123582.
  • Meili, L., et al., 2019. Adsorption of Methylene Blue on Agroindustrial Wastes: Experimental Investigation and Phenomenological Modelling. Progress in Biophysics and Molecular Biology, 141, 60-71.
  • Miraboutalebi, S. M., et al., 2017. Methylene Blue Adsorption Via Maize Silk Powder: Kinetic, equilibrium, Thermodynamic Studies and Residual Error Analysis. Process Safety and Environmental Protection, 106, 191-202.
  • Mouni, L., et al., 2018. Removal of Methylene Blue from Aqueous Solutions by Adsorption on Kaolin: Kinetic and Equilibrium Studies. Applied Clay Science. 153, 38-45.
  • Mousavi, S. A., et al., 2023. Removal of Rhodamine B from Aqueous Solution by Stalk Corn Activated Carbon: Adsorption and Kinetic Study. Biomass Conversion and Biorefinery, 13, 7927-7936.
  • Munagapati, V. S., et al., 2022. Adsorption of Reactive Red 195 from Aqueous Medium Using Lotus (Nelumbo nucifera) Leaf Powder Chemically Modified with Dimethylamine: Characterization, Isotherms, Kinetics, Thermodynamics, and Mechanism Assessment. International Journal of Phytoremediation, 24, 131-144.
  • Pamukoglu, M. Y., et al., 2024. Green synthesis of SiNH2@FeNP Nanocomposite Using and Removal of Methylene Blue from Aqueous Solution: Experimental Design Approach. International Journal of Environmental Analytical Chemistry. 104, 3694-3712.
  • Pawar, R. R., et al., 2018. Porous Synthetic Hectorite Clay-Alginate Composite Beads for Effective Adsorption of Methylene Blue Dye from Aqueous Solution. International Journal of Biological Macromolecules, 114, 1315-1324.
  • Prasad, K., et al., 2023. Potential Efficacy of A Fruit Waste-Manila Tamarind Seed Powder for The Adsorption of Hazardous Dyes from Aqueous Solution: Batch Studies. Materials Today: Proceedings, 80, 1334-1340.
  • Russo, R., et al., 2007. Effect of Cross-Linking with Calcium Ions on The Physical Properties of Alginate Films. Biomacromolecules, 8, 3193-3197.
  • Saravanan, A., et al., 2020. Optimization and Modeling of Reactive Yellow Adsorption by Surface Modified Delonix Regia Seed: Study of Nonlinear Isotherm and Kinetic Parameters. Surfaces and Interfaces, 20, 100520.
  • Sonmez, G., Akyuz, L., 2024. In situ Preparation and Characterization of Cr-MOF-Alginates for Methylene Blue Through The Adsorption Process. Journal of Water Process Engineering, 62, 105318.
  • Şentürk, Ä. l., 2023. Effective Adsorption of Congo Red by Eco-Friendly Granite-Modified Magnetic Chitosan Nanocomposite (G@ Fe3O4@ CS). Biomass Conversion and Biorefinery, 1-18.
  • Temel, F. A. n., 2024. Everzol Yellow 3RS Boyar Maddesinin Gidya Üzerine Adsorpsiyonu: Kinetik ve İzoterm Çalışmaları. Karadeniz Fen Bilimleri Dergisi, 14, 194-210.
  • Thakur, S., 2021. An Overview on Alginate Based Bio-Composite Materials for Wastewater Remedial. Materials Today: Proceedings, 37, 3305-3309.
  • Thakur, S., et al., 2018. Recent Progress in Sodium Alginate Based Sustainable Hydrogels for Environmental Applications. Journal of Cleaner Production, 198, 143-159.
  • Umesh, A. S., et al., 2024. Enhanced Adsorption: Reviewing The Potential of Reinforcing Polymers and Hydrogels with Nanomaterials for Methylene Blue Dye Removal. Surfaces and Interfaces, 51, 104670.
  • Vadivelan, V., Kumar, K. V., 2005. Equilibrium, Kinetics, Mechanism, and Process Design for The Sorption of Methylene Blue onto Rice Husk. Journal of Colloid and Interface Science, 286, 90-100.
  • Veerakumar, P., et al., 2019. Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome Black-T from Aqueous Solution. Journal of Chemical & Engineering Data, 64, 1305-1321.
  • Wang, J., Guo, X., 2020. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 258, 127279.
  • Yang, S.-T., et al., 2011. Removal of Methylene Blue from Aqueous Solution by Graphene Oxide. Journal of Colloid and Interface Science, 359, 24-29.
  • Yoldaş, B., et al, 2022. Lavanta Bitkisi Özütü Kullanilarak SiNH2@FeNP Nanokompozitinin Yeşil Sentezi İle Sulu Çözeltiden Metilen Mavisinin Giderimi: Deneysel Tasarim Yaklaşimi. Mühendislik Bilimleri ve Tasarım Dergisi. 10, 272-285.
  • Zhang, M., et al., 2021a. Triple-Functional Lignocellulose/Chitosan/Ag@ Tio2 Nanocomposite Membrane for Simultaneous Sterilization, Oil/Water Emulsion Separation, and Organic Pollutant Removal. Journal of Environmental Chemical Engineering, 9, 106728.
  • Zhang, Z.-H., et al., 2021b. MXene/sodium Alginate Gel Beads for Adsorption of Methylene Blue. Materials Chemistry and Physics, 260, 124123.
  • Zhao, W., et al., 2013. Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering. Journal of Chemical Technology & Biotechnology, 88, 327-339.

REMOVAL OF METHYLENE BLUE DYESTUFF FROM SYNTHETIC WASTEWATER USING Cu-Alg HYDROGEL BEADS

Year 2024, Volume: 12 Issue: 4, 765 - 778, 25.12.2024
https://doi.org/10.21923/jesd.1560542

Abstract

The recent increase in water pollution brings with it increasing environmental concerns. For this reason, the removal of pollutants from water is becoming increasingly important in terms of both environmental and human health. Adsorption process, which is an easy and low-cost method for the removal of pollutants from water, is used extensively. The design and development of adsorbents to be used in the adsorption process is of great interest among researchers. One of these adsorbents is alginate-based hydrogel beads. In this study, alginate hydrogel beads obtained by crosslinking with copper (II) ions were used for the removal of methylene blue from water. Alginate hydrogel beads called Cu-Alg were synthesized by crosslinking sodium alginate with copper (II) ions and characterized by FTIR. The effect of adsorbent dose, pH, temperature, contact time and dye concentration on the removal of methylene blue from water by batch adsorption process using Cu-Alg as adsorbent was investigated. As a result of the experiments, 0.1 g/50mL adsorbent dose, 12 pH level, 30°C temperature, 120 minutes contact time and 10 mg/L methylene blue concentration were determined as optimum conditions. Under these conditions, the maximum methylene blue removal was 90.07 %. In addition, it was shown that methylene blue adsorption on Cu-Alg hydrogel beads occurs via chemisorption and physisorption using various kinetic isotherm models. Thermodynamic analysis revealed that the adsorption process was exothermic and spontaneous.

References

  • Ahmad, T., Danish, M., 2022. A review of Avocado Waste-Derived Adsorbents: Characterizations, Adsorption Characteristics, and Surface Mechanism. Chemosphere, 296, 134036.
  • Al-Ghouti, M. A., Da'ana, D. A., 2020. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A review. Journal of Hazardous Materials, 393, 122383.
  • Alhussain, H., et al., 2024. Purification of RhB Dye from Aquatic Media via CaO-TiO2@ g-C3N4 Nanocomposite. Inorganic Chemistry Communications, 159, 111785.
  • Ali, J., et al., 2022. A New Biosource for Synthesis of Activated Carbon and Its Potential Use for Removal of Methylene Blue and Eriochrome Black T from Aqueous Solutions, Industrial Crops and Products. 179, 114676.
  • Bahsis, L., et al., 2020. Cu (ii)-alginate-based Superporous Hydrogel Catalyst for Click Chemistry azide–alkyne Cycloaddition Type Reactions in Water. RSC Advances, 10, 32821-32832.
  • Chan, L., et al., 2002. Cross-linking Mechanisms of Calcium and Zinc in Production of Alginate Microspheres. International Journal of Pharmaceutics, 242, 255-258.
  • Cheng, J., et al., 2020. Highly Efficient Removal of Methylene Blue Dye from an Aqueous Solution Using Cellulose Acetate Nanofibrous Membranes Modified by Polydopamine. ACS Omega, 5, 5389-5400.
  • Contreras, M., et al., 2019. Bio-removal of Methylene Blue from Aqueous Solution by Galactomyces Geotrichum KL20A. Water, 11, 282.
  • Eghbalifam, N., et al., 2015. Antibacterial Silver Nanoparticles in Polyvinyl Alcohol/Sodium Alginate Blend Produced by Gamma Irradiation. International Journal of Biological Macromolecules, 80, 170-176.
  • Eltaweil, A. S., et al., 2021. Highly Efficient Removal for Methylene Blue and Cu2+ onto UiO-66 Metal-Organic Framework/Carboxylated Graphene Oxide-Incorporated Sodium Alginate Beads. ACS Omega, 6, 23528-23541.
  • Fernandes, A. N., et al., 2010. Isotherm and Thermodynamic Data of Adsorption of Methylene Blue from Aqueous Solution onto Peat. Journal of Molecular Structure, 982, 62-65.
  • Gunay Gurer, A., et al., 2021. Adsorption Isotherms, Thermodynamics, and Kinetic Modeling of Methylene Blue onto Novel Carbonaceous Adsorbent Derived from Bitter Orange Peels. Water, Air, & Soil Pollution, 232, 1-17.
  • Jiang, D., et al., 2023. A Mechanism Study of Methylene Blue Adsorption on Seaweed Biomass Derived Carbon: From Macroscopic to Microscopic Scale. Process Safety and Environmental Protection, 172, 1132-1143.
  • Karthiga Devi, G., vd., 2016. Green synthesis of novel silver nanocomposite hydrogel based on sodium alginate as an efficient biosorbent for the dye wastewater treatment: prediction of isotherm and kinetic parameters. Desalination and Water Treatment. 57, 27686-27699.
  • Kaur, Y., et al., 2021. Adsorptive Removal of Eriochrome Black T (EBT) Dye by Using Surface Active Low Cost Zinc Oxide Nanoparticles: A Comparative Overview. Chemosphere, 278, 130366.
  • Kavci, E., et al., 2023. Removal of Methylene Blue Dye from Aqueous Solution Using Citric Acid Modified Apricot Stone. Chemical Engineering Communications, 210, 165-180.
  • Khan, I., et al., 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14, 242.
  • Lee, S. J., vd., 2020. Seawater Desalination Using MOF-Incorporated Cu-Based Alginate Beads Without Energy Consumption. ACS Applied Materials & Interfaces. 12, 16319-16326.
  • Li, X., et al., 2019. Adsorption Behaviour of Eriochrome Black T from Water onto a Cross-Linked β-cyclodextrin Polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 123582.
  • Meili, L., et al., 2019. Adsorption of Methylene Blue on Agroindustrial Wastes: Experimental Investigation and Phenomenological Modelling. Progress in Biophysics and Molecular Biology, 141, 60-71.
  • Miraboutalebi, S. M., et al., 2017. Methylene Blue Adsorption Via Maize Silk Powder: Kinetic, equilibrium, Thermodynamic Studies and Residual Error Analysis. Process Safety and Environmental Protection, 106, 191-202.
  • Mouni, L., et al., 2018. Removal of Methylene Blue from Aqueous Solutions by Adsorption on Kaolin: Kinetic and Equilibrium Studies. Applied Clay Science. 153, 38-45.
  • Mousavi, S. A., et al., 2023. Removal of Rhodamine B from Aqueous Solution by Stalk Corn Activated Carbon: Adsorption and Kinetic Study. Biomass Conversion and Biorefinery, 13, 7927-7936.
  • Munagapati, V. S., et al., 2022. Adsorption of Reactive Red 195 from Aqueous Medium Using Lotus (Nelumbo nucifera) Leaf Powder Chemically Modified with Dimethylamine: Characterization, Isotherms, Kinetics, Thermodynamics, and Mechanism Assessment. International Journal of Phytoremediation, 24, 131-144.
  • Pamukoglu, M. Y., et al., 2024. Green synthesis of SiNH2@FeNP Nanocomposite Using and Removal of Methylene Blue from Aqueous Solution: Experimental Design Approach. International Journal of Environmental Analytical Chemistry. 104, 3694-3712.
  • Pawar, R. R., et al., 2018. Porous Synthetic Hectorite Clay-Alginate Composite Beads for Effective Adsorption of Methylene Blue Dye from Aqueous Solution. International Journal of Biological Macromolecules, 114, 1315-1324.
  • Prasad, K., et al., 2023. Potential Efficacy of A Fruit Waste-Manila Tamarind Seed Powder for The Adsorption of Hazardous Dyes from Aqueous Solution: Batch Studies. Materials Today: Proceedings, 80, 1334-1340.
  • Russo, R., et al., 2007. Effect of Cross-Linking with Calcium Ions on The Physical Properties of Alginate Films. Biomacromolecules, 8, 3193-3197.
  • Saravanan, A., et al., 2020. Optimization and Modeling of Reactive Yellow Adsorption by Surface Modified Delonix Regia Seed: Study of Nonlinear Isotherm and Kinetic Parameters. Surfaces and Interfaces, 20, 100520.
  • Sonmez, G., Akyuz, L., 2024. In situ Preparation and Characterization of Cr-MOF-Alginates for Methylene Blue Through The Adsorption Process. Journal of Water Process Engineering, 62, 105318.
  • Şentürk, Ä. l., 2023. Effective Adsorption of Congo Red by Eco-Friendly Granite-Modified Magnetic Chitosan Nanocomposite (G@ Fe3O4@ CS). Biomass Conversion and Biorefinery, 1-18.
  • Temel, F. A. n., 2024. Everzol Yellow 3RS Boyar Maddesinin Gidya Üzerine Adsorpsiyonu: Kinetik ve İzoterm Çalışmaları. Karadeniz Fen Bilimleri Dergisi, 14, 194-210.
  • Thakur, S., 2021. An Overview on Alginate Based Bio-Composite Materials for Wastewater Remedial. Materials Today: Proceedings, 37, 3305-3309.
  • Thakur, S., et al., 2018. Recent Progress in Sodium Alginate Based Sustainable Hydrogels for Environmental Applications. Journal of Cleaner Production, 198, 143-159.
  • Umesh, A. S., et al., 2024. Enhanced Adsorption: Reviewing The Potential of Reinforcing Polymers and Hydrogels with Nanomaterials for Methylene Blue Dye Removal. Surfaces and Interfaces, 51, 104670.
  • Vadivelan, V., Kumar, K. V., 2005. Equilibrium, Kinetics, Mechanism, and Process Design for The Sorption of Methylene Blue onto Rice Husk. Journal of Colloid and Interface Science, 286, 90-100.
  • Veerakumar, P., et al., 2019. Functionalized Mesoporous Carbon Nanostructures for Efficient Removal of Eriochrome Black-T from Aqueous Solution. Journal of Chemical & Engineering Data, 64, 1305-1321.
  • Wang, J., Guo, X., 2020. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere, 258, 127279.
  • Yang, S.-T., et al., 2011. Removal of Methylene Blue from Aqueous Solution by Graphene Oxide. Journal of Colloid and Interface Science, 359, 24-29.
  • Yoldaş, B., et al, 2022. Lavanta Bitkisi Özütü Kullanilarak SiNH2@FeNP Nanokompozitinin Yeşil Sentezi İle Sulu Çözeltiden Metilen Mavisinin Giderimi: Deneysel Tasarim Yaklaşimi. Mühendislik Bilimleri ve Tasarım Dergisi. 10, 272-285.
  • Zhang, M., et al., 2021a. Triple-Functional Lignocellulose/Chitosan/Ag@ Tio2 Nanocomposite Membrane for Simultaneous Sterilization, Oil/Water Emulsion Separation, and Organic Pollutant Removal. Journal of Environmental Chemical Engineering, 9, 106728.
  • Zhang, Z.-H., et al., 2021b. MXene/sodium Alginate Gel Beads for Adsorption of Methylene Blue. Materials Chemistry and Physics, 260, 124123.
  • Zhao, W., et al., 2013. Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering. Journal of Chemical Technology & Biotechnology, 88, 327-339.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Wastewater Treatment Processes, Materials Science and Technologies
Journal Section Research Articles
Authors

Lalehan Akyüz 0000-0001-8548-3037

Gamze Sönmez 0000-0003-3597-1942

Publication Date December 25, 2024
Submission Date October 3, 2024
Acceptance Date November 4, 2024
Published in Issue Year 2024 Volume: 12 Issue: 4

Cite

APA Akyüz, L., & Sönmez, G. (2024). METİLEN MAVİSİ BOYAR MADDESİNİN SENTETİK ATIKSULARDAN Cu-Alg HİDROJEL BONCUKLAR KULLANILARAK UZAKLAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 12(4), 765-778. https://doi.org/10.21923/jesd.1560542