Research Article
BibTex RIS Cite

DERİ DOKUSUNUN FARKSAL BAĞLAŞIMLI VÜCUT İÇİ HABERLEŞME KANALININ DAĞITIK PARAMETRELİ İLETİM HATTI MODEL ANALİZİ

Year 2025, Volume: 13 Issue: 2, 545 - 555, 27.06.2025
https://doi.org/10.21923/jesd.1594994

Abstract

Vücut içi haberleşme, insan vücudunu elektriksel sinyallerin iletimi için haberleşme kanalı olarak kullanan yenilikçi bir yöntemdir. Bu çalışmada, giyilebilir sistemlere için 100 MHz'e kadar olan farksal bağlaşımlı vücut içi haberleşme kanalı, dağıtık parametreli iletim hattı modeli kullanılarak analitik olarak incelenmiştir. Söz konusu model, dokunun frekansa bağlı elektriksel özellikleri dikkate alınarak iletim hattı davranışının detaylı bir şekilde analiz edilmesini sağlamaktadır. Elde edilen sonuçlar, eşdeğer devredeki direnç ve kapasitansın artan frekansla birlikte azaldığını, kondüktansın ise arttığını göstermektedir. Özellikle, zayıflama ve faz sabitlerinin incelenen frekans bandında 100 kHz’de sırasıyla 3,85 Np/m ve 3,58 rad/m ile en yüksek değerlerine ulaştığı belirlenmiştir. Buna ek olarak, haberleşme kanalında iletilen gücün frekans arttıkça aynı uzaklıklarda artış gösterdiği gözlemlenmiştir. Bu bulgular, yeni nesil giyilebilir sistemlerin haberleşme kanalı tasarımı için kritik bilgiler sunmakta ve sistem performansını optimize etmek için frekans seçimi açısından yol gösterici bir çerçeve oluşturmaktadır. Bu çalışma, düşük güçlü ve yüksek verimli veri haberleşmesi için vücut içi haberleşme sistemlerinin geliştirilmesine katkı sağlamayı hedeflemektedir.

References

  • Alam, M.M., Ben Hamida, E., 2014. Surveying Wearable Human Assistive Technology for Life and Safety Critical Applications: Standards, Challenges and Opportunities. Sensors, 14 (5), 9153-9209.
  • Alper, F., Coşkun, Ö., 2020. ISM 2.45 GHz Mikroşerit İmplant Anten Tasarımı ve Doku İçi Ölçümleri. Mühendislik Bilimleri ve Tasarım Dergisi. 8 (2), 541-551.
  • Alper, F., Coskun, O., 2022. Design of a Microstrip Implant Antenna for Biotelemetry Applications. Optoelectronics and Advanced Materials-Rapid Communications. 16 (9-10), 430-436.
  • Andreuccetti, D., Fossi, R. and Petrucci, C., 2012. An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. http://niremf.ifac.cnr.it/tissprop [Son erişim tarihi: 09/10/2024].
  • Ateş, K., 2019. Vücut İçi Haberleşmenin İletim Hattı Modeli ile İncelenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Türkiye.
  • Ateş, K., 2024. Yeni Nesil Haberleşme Sistemleri İçin Vücut İçi Haberleşme Kanalının Modellenmesi ve İncelenmesi. Doktora Tezi, Akdeniz Üniversitesi, Türkiye.
  • Ateş, K., İl, N., Savazzi, P., Dell’Acqua, F., Vizziello, A., Özen, Ş., 2024a. Comparison of Galvanic and Capacitive Coupled Intrabody Communication Channel by using Isolation Transformer. 2024 Medical Technologies Congress, 1-4.
  • Ateş, K., Marcucci, A., Savazzi, P., Özen, Ş., Dell'Acqua, F., Vizziello, A., 2024b. Channel Characterization of Implantable Intrabody Communication through Experimental Measurements. Proceedings of the 11th Annual ACM International Conference on Nanoscale Computing and Communication, 66-71.
  • Ates, K., Ozen, S., Carlak, H. F., 2017. The Freshness Analysis of an Apple and A Potato using Dielectric Properties at the Microwave Frequency Region. In 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), 1688-1693.
  • Ateş, K., Özen, Ş., 2019. Modelling of Galvanic Coupled Intrabody Communication due to Finite Element Method. 2019 Medical Technologies Congress, 175-178.
  • Callejón, M.A., Roa, L. M., Reina-Tosina, J., Naranjo-Hernandez, D., 2011. Study of Attenuation and Dispersion Through the Skin in Intrabody Communications Systems. IEEE Transactions on Information Technology in Biomedicine, 16 (1), 159-165.
  • Callejón, M.A., Naranjo-Hernández, D., Reina-Tosina, J., Roa, L.M., 2012. Distributed Circuit Modeling of Galvanic and Capacitive Coupling for Intrabody Communication. IEEE Transactions on Biomedical Engineering, 59 (11), 3263-3269.
  • Celik, A., Salama, N.S. and Eltawil, A.M., 2021. The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling. IEEE Internet of Things Journal, 9 (1), 321-345.
  • Chatterjee, B., Mohseni, P., Sen, S., 2023. Bioelectronic Sensor Nodes for the Internet of Bodies. Annual Review of Biomedical Engineering, 25, 101-129.
  • Chen, Z.Y., Gao, Y.M., Du, M., 2018. Multilayer Distributed Circuit Modeling for Galvanic Coupling Intrabody Communication. Journal of Sensors, 2018, 8096064, 1-8.
  • Cosoli, G., Spinsante, S., Scardulla, F., D’Acquisto, L., Scalise, L., 2021. Wireless ECG and Cardiac Monitoring Systems: State of the Art, Available Commercial Devices and Useful Electronic Components. Measurement, 177, 109243.
  • Drude, S., 2007. Requirements and Application Scenarios for Body Area Networks. 2007 16th IST Mobile and Wireless Communications Summit. 1-5.
  • Ferikoğlu, A., Çerezci, O., Kahriman, M., Yener, Ş.Ç., 2014. Electromagnetic Absorption Rate in a Multilayer Human Tissue Model Exposed to Base-Station Radiation Using Transmission Line Analysis. IEEE Antennas and Wireless Propagation Letters. 13, 903-906.
  • Gabriel, S., Lau, R.W., Gabriel, C., 1996. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Physics in Medicine & Biology, 41 (11), 2271
  • Gigena, C., Di Vincenzo, M., Toselli, L., Bellia-Munzon, G., Sanjurjo, D., Martinez, J., Vallee, M., Nazar-Peirano, M., Martinez-Ferro, M., 2022. Remote Treatment of Pectus Carinatum (Telepectus) During the COVID-19 Pandemic. Journal of Pediatric Surgery, 57 (8), 1609-1613.
  • Gözel, M., Kasar, Ö., Kahriman, M., 2019. 868 MHz UHF Bandında H-Şeklinde Katlanmış İmplant Mikroşerit Dipol Anten Tasarımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10 (3), 797-806.
  • IEEE, 2012. IEEE Standard for Local and Metropolitan Area Networks-Part 15.6: Wireless Body Area Networks. IEEE std., 802, (6), 2012.
  • Lodi, M. B., Curreli, N., Fanti, A., Cuccu, C., Pani, D., Sanginario, A., Spanu, A., Ross, P. M., Crepaldi, M., Demarchi, D., Mazzarella, G., 2020. A Periodic Transmission Line Model for Body Channel Communication. IEEE Access, 8, 160099-160115.
  • Mao, J., Yang, H., Lian Y., Zhao, B., 2018. A Five-Tissue-Layer Human Body Communication Circuit Model Tunable to Individual Characteristics. IEEE Transactions on Biomedical Circuits and Systems, 12 (2), 303-312.
  • Mishra, S., González-Briones, A., Bhoi, A.K., Mallick, P.K. Corchado, J.M., 2022. Connected E-Health: Integrated IoT and Cloud Computing. Cham: İsviçre: Springer Nature.
  • Nikita, K.S., 2014. Handbook of Biomedical Telemetry. Piscataway: NJ: IEEE.
  • Polat, T.G., Ateş, K., Bilgin, S., Duman, O., Özen, Ş., Tunç, S., 2019. Carbon Nanotube, Poly (3, 4-Ethylenedioxythiophene): Poly (Styrenesulfonate) and Ag Nanoparticle Doped Gelatin Based Electro-Active Hydrogel Systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123751.
  • Pozar, D.M., 2011. Microwave Engineering. Hoboken: NJ: John Wiley & Sons.
  • Swaminathan, M., Cabrera, F.S., Pujol, J.S., Muncuk, U., Schirner, G., Chowdhury, K.R., 2016. Multi-Path Model and Sensitivity Analysis for Galvanic Coupled Intrabody Communication Through Layered Tissue. IEEE Transactions on Biomedical Circuits and Systems, 10 (2), 339-351.
  • Tomlinson, W.J., Abarca, F., Chowdhury, K.R., Stojanovic, M., Yu, C., 2015. Experimental Assessment of Human-Body-Like Tissue as a Communication Channel for Galvanic Coupling. 12th IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), 1-6.
  • Troller‐Renfree, S.V., Morales, S., Leach, S.C., Bowers, M.E., Debnath, R., Fifer, W.P., Fox, N.A. and Noble, K.G. 2021. Feasibility of Assessing Brain Activity Using Mobile, in‐Home Collection of Electroencephalography: Methods and Analysis. Developmental Psychobiology, 63(6): e22128.
  • Vizziello, A., Galluccio, L., Magarini, M., Savazzi, P., Biglioli, F., Bolognesi, F., Magenes, G., 2022. An Implantable System for Neural Communication and Stimulation: Design and Implementation. IEEE Communication Magazine, 60 (8), 74-79.
  • Vizziello, A., Magarini, M., Savazzi, P., Galluccio, L., 2023. Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions, Comput. Networks, 227, 109718.
  • Wang, H., Tang, X., Choy, C.S., Sobelman, G.E., 2015. Cascaded Network Body Channel Model for İntrabody Communication. IEEE Journal of Biomedical and Health Informatics, 20 (4), 1044-1052.
  • Wegmüller, M.S., 2007. Intra-Body Communication for Biomedical Sensor Networks. Doktora Tezi. ETH Zurich, İsviçre.

DISTRIBUTED PARAMETER TRANSMISSION LINE MODEL ANALYSIS OF THE GALVANIC COUPLED INTRABODY COMMUNICATION CHANNEL OF SKIN TISSUE

Year 2025, Volume: 13 Issue: 2, 545 - 555, 27.06.2025
https://doi.org/10.21923/jesd.1594994

Abstract

Intrabody communication is an innovative method that utilizes the human body as a communication channel for transmitting electrical signals. In this study, the galvanic coupled intrabody communication channel for wearable systems was analytically investigated using a distributed parameter transmission line model up to 100 MHz. The proposed model enables a detailed analysis of the transmission line behavior by considering the frequency dependent electrical properties of the tissue. The results indicate that the resistance and capacitance in the equivalent circuit decrease with increasing frequency, while conductance increases. Notably, the attenuation and phase constants were found to reach their maximum values at 100 kHz within the investigated frequency band, measured as 3.85 Np/m and 3.58 rad/m, respectively. Additionally, it was observed that the transmitted power in communication increases with frequency at the same distances. These findings provide critical insights into the design of communication channels in next-generation wearable systems and establish a guiding framework for optimizing system performance through frequency selection. This study aims to contribute to the development of intrabody communication systems for low-power and high-efficiency data communication.

References

  • Alam, M.M., Ben Hamida, E., 2014. Surveying Wearable Human Assistive Technology for Life and Safety Critical Applications: Standards, Challenges and Opportunities. Sensors, 14 (5), 9153-9209.
  • Alper, F., Coşkun, Ö., 2020. ISM 2.45 GHz Mikroşerit İmplant Anten Tasarımı ve Doku İçi Ölçümleri. Mühendislik Bilimleri ve Tasarım Dergisi. 8 (2), 541-551.
  • Alper, F., Coskun, O., 2022. Design of a Microstrip Implant Antenna for Biotelemetry Applications. Optoelectronics and Advanced Materials-Rapid Communications. 16 (9-10), 430-436.
  • Andreuccetti, D., Fossi, R. and Petrucci, C., 2012. An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. http://niremf.ifac.cnr.it/tissprop [Son erişim tarihi: 09/10/2024].
  • Ateş, K., 2019. Vücut İçi Haberleşmenin İletim Hattı Modeli ile İncelenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi, Türkiye.
  • Ateş, K., 2024. Yeni Nesil Haberleşme Sistemleri İçin Vücut İçi Haberleşme Kanalının Modellenmesi ve İncelenmesi. Doktora Tezi, Akdeniz Üniversitesi, Türkiye.
  • Ateş, K., İl, N., Savazzi, P., Dell’Acqua, F., Vizziello, A., Özen, Ş., 2024a. Comparison of Galvanic and Capacitive Coupled Intrabody Communication Channel by using Isolation Transformer. 2024 Medical Technologies Congress, 1-4.
  • Ateş, K., Marcucci, A., Savazzi, P., Özen, Ş., Dell'Acqua, F., Vizziello, A., 2024b. Channel Characterization of Implantable Intrabody Communication through Experimental Measurements. Proceedings of the 11th Annual ACM International Conference on Nanoscale Computing and Communication, 66-71.
  • Ates, K., Ozen, S., Carlak, H. F., 2017. The Freshness Analysis of an Apple and A Potato using Dielectric Properties at the Microwave Frequency Region. In 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), 1688-1693.
  • Ateş, K., Özen, Ş., 2019. Modelling of Galvanic Coupled Intrabody Communication due to Finite Element Method. 2019 Medical Technologies Congress, 175-178.
  • Callejón, M.A., Roa, L. M., Reina-Tosina, J., Naranjo-Hernandez, D., 2011. Study of Attenuation and Dispersion Through the Skin in Intrabody Communications Systems. IEEE Transactions on Information Technology in Biomedicine, 16 (1), 159-165.
  • Callejón, M.A., Naranjo-Hernández, D., Reina-Tosina, J., Roa, L.M., 2012. Distributed Circuit Modeling of Galvanic and Capacitive Coupling for Intrabody Communication. IEEE Transactions on Biomedical Engineering, 59 (11), 3263-3269.
  • Celik, A., Salama, N.S. and Eltawil, A.M., 2021. The Internet of Bodies: A Systematic Survey on Propagation Characterization and Channel Modeling. IEEE Internet of Things Journal, 9 (1), 321-345.
  • Chatterjee, B., Mohseni, P., Sen, S., 2023. Bioelectronic Sensor Nodes for the Internet of Bodies. Annual Review of Biomedical Engineering, 25, 101-129.
  • Chen, Z.Y., Gao, Y.M., Du, M., 2018. Multilayer Distributed Circuit Modeling for Galvanic Coupling Intrabody Communication. Journal of Sensors, 2018, 8096064, 1-8.
  • Cosoli, G., Spinsante, S., Scardulla, F., D’Acquisto, L., Scalise, L., 2021. Wireless ECG and Cardiac Monitoring Systems: State of the Art, Available Commercial Devices and Useful Electronic Components. Measurement, 177, 109243.
  • Drude, S., 2007. Requirements and Application Scenarios for Body Area Networks. 2007 16th IST Mobile and Wireless Communications Summit. 1-5.
  • Ferikoğlu, A., Çerezci, O., Kahriman, M., Yener, Ş.Ç., 2014. Electromagnetic Absorption Rate in a Multilayer Human Tissue Model Exposed to Base-Station Radiation Using Transmission Line Analysis. IEEE Antennas and Wireless Propagation Letters. 13, 903-906.
  • Gabriel, S., Lau, R.W., Gabriel, C., 1996. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Physics in Medicine & Biology, 41 (11), 2271
  • Gigena, C., Di Vincenzo, M., Toselli, L., Bellia-Munzon, G., Sanjurjo, D., Martinez, J., Vallee, M., Nazar-Peirano, M., Martinez-Ferro, M., 2022. Remote Treatment of Pectus Carinatum (Telepectus) During the COVID-19 Pandemic. Journal of Pediatric Surgery, 57 (8), 1609-1613.
  • Gözel, M., Kasar, Ö., Kahriman, M., 2019. 868 MHz UHF Bandında H-Şeklinde Katlanmış İmplant Mikroşerit Dipol Anten Tasarımı. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10 (3), 797-806.
  • IEEE, 2012. IEEE Standard for Local and Metropolitan Area Networks-Part 15.6: Wireless Body Area Networks. IEEE std., 802, (6), 2012.
  • Lodi, M. B., Curreli, N., Fanti, A., Cuccu, C., Pani, D., Sanginario, A., Spanu, A., Ross, P. M., Crepaldi, M., Demarchi, D., Mazzarella, G., 2020. A Periodic Transmission Line Model for Body Channel Communication. IEEE Access, 8, 160099-160115.
  • Mao, J., Yang, H., Lian Y., Zhao, B., 2018. A Five-Tissue-Layer Human Body Communication Circuit Model Tunable to Individual Characteristics. IEEE Transactions on Biomedical Circuits and Systems, 12 (2), 303-312.
  • Mishra, S., González-Briones, A., Bhoi, A.K., Mallick, P.K. Corchado, J.M., 2022. Connected E-Health: Integrated IoT and Cloud Computing. Cham: İsviçre: Springer Nature.
  • Nikita, K.S., 2014. Handbook of Biomedical Telemetry. Piscataway: NJ: IEEE.
  • Polat, T.G., Ateş, K., Bilgin, S., Duman, O., Özen, Ş., Tunç, S., 2019. Carbon Nanotube, Poly (3, 4-Ethylenedioxythiophene): Poly (Styrenesulfonate) and Ag Nanoparticle Doped Gelatin Based Electro-Active Hydrogel Systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123751.
  • Pozar, D.M., 2011. Microwave Engineering. Hoboken: NJ: John Wiley & Sons.
  • Swaminathan, M., Cabrera, F.S., Pujol, J.S., Muncuk, U., Schirner, G., Chowdhury, K.R., 2016. Multi-Path Model and Sensitivity Analysis for Galvanic Coupled Intrabody Communication Through Layered Tissue. IEEE Transactions on Biomedical Circuits and Systems, 10 (2), 339-351.
  • Tomlinson, W.J., Abarca, F., Chowdhury, K.R., Stojanovic, M., Yu, C., 2015. Experimental Assessment of Human-Body-Like Tissue as a Communication Channel for Galvanic Coupling. 12th IEEE International Conference on Wearable and Implantable Body Sensor Networks (BSN), 1-6.
  • Troller‐Renfree, S.V., Morales, S., Leach, S.C., Bowers, M.E., Debnath, R., Fifer, W.P., Fox, N.A. and Noble, K.G. 2021. Feasibility of Assessing Brain Activity Using Mobile, in‐Home Collection of Electroencephalography: Methods and Analysis. Developmental Psychobiology, 63(6): e22128.
  • Vizziello, A., Galluccio, L., Magarini, M., Savazzi, P., Biglioli, F., Bolognesi, F., Magenes, G., 2022. An Implantable System for Neural Communication and Stimulation: Design and Implementation. IEEE Communication Magazine, 60 (8), 74-79.
  • Vizziello, A., Magarini, M., Savazzi, P., Galluccio, L., 2023. Intra-Body Communications for Nervous System Applications: Current Technologies and Future Directions, Comput. Networks, 227, 109718.
  • Wang, H., Tang, X., Choy, C.S., Sobelman, G.E., 2015. Cascaded Network Body Channel Model for İntrabody Communication. IEEE Journal of Biomedical and Health Informatics, 20 (4), 1044-1052.
  • Wegmüller, M.S., 2007. Intra-Body Communication for Biomedical Sensor Networks. Doktora Tezi. ETH Zurich, İsviçre.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Research Articles
Authors

Kayhan Ateş 0000-0002-6016-6577

Şükrü Özen 0000-0002-5538-6786

Publication Date June 27, 2025
Submission Date December 2, 2024
Acceptance Date May 19, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Ateş, K., & Özen, Ş. (2025). DERİ DOKUSUNUN FARKSAL BAĞLAŞIMLI VÜCUT İÇİ HABERLEŞME KANALININ DAĞITIK PARAMETRELİ İLETİM HATTI MODEL ANALİZİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 545-555. https://doi.org/10.21923/jesd.1594994