Research Article
BibTex RIS Cite

TİCARİ KALSİT VE MİDYE TOZU TAKVİYELİ PA6.6 KOMPOZİTLERİN SÜRDÜRÜLEBİLİR PERFORMANS DEĞERLENDİRMESİ

Year 2025, Volume: 13 Issue: 3, 843 - 855, 30.09.2025
https://doi.org/10.21923/jesd.1663861

Abstract

Polimer kompozitlerin mekanik özelliklerini iyileştirmek ve maliyetlerini azaltmak amacıyla dolgu malzemeleri yaygın olarak kullanılmaktadır. Mineral ve biyojenik dolgu maddelerinin polimer matris içindeki dağılımı, kompozitin mukavemeti ve tokluğu üzerinde önemli bir etkiye sahiptir. Bu çalışmada, %35 cam elyaf takviyeli Poliamid 6.6 (PA6.6) içerisine ayrı ayrı ticari kalsit ve midye tozu ilave edilerek, bu katkıların mekanik ve morfolojik özellikler üzerindeki etkileri incelenmiştir. Matris içerisine ağırlıkça %10, %20 ve %30 oranlarında kalsit veya midye tozu eklenerek, her katkı için üçer olmak üzere toplam altı farklı kompozit grup ve bir referans numunesiyle birlikte yedi grup oluşturulmuştur. Karışımlar ekstrüzyon yöntemiyle hazırlanmış ve enjeksiyon kalıplama ile numuneler üretilmiştir. Sonuçlar, her iki dolgu malzemesinin elastiklik modülünü artırırken, çekme mukavemeti ve kopma uzaması değerlerinde düşüşe neden olduğunu göstermektedir. Çekme mukavemetinde maksimum oranda midye tozu ilavesiyle %15 azalma; maksimum oranda kalsit ilavesiyle %25 azalma ise gözlemlenmiştir. Eğilme testlerinde de benzer bir eğilim gözlemlenmiş; eğilme modülünde artış sağlanırken, eğilme mukavemeti ve deformasyon yeteneğinde azalma tespit edilmiştir. Ayrıca, ticari kalsit ve midye tozu ilavesi sertlik değerlerinde artış sağlarken, Izod çentikli darbe mukavemetinde belirgin bir düşüş meydana gelmiştir. Taramalı elektron mikroskobu (SEM) analizleri, PA6.6 matrisi içinde dolgu malzemelerinin dağılımını incelemek amacıyla gerçekleştirilmiştir. Bu çalışma, polimer kompozitlerinin mekanik özelliklerini modifiye etmeye yönelik dolgu malzemelerinin etkilerini ortaya koyarak, malzeme tasarımına yönelik potansiyel uygulamalara katkı sunmaktadır.

References

  • Adeniyi, A. G., Ighalo, J. O., Onifade, D. V. 2019. Banana and Plantain Fiber-Reinforced Polymer Composites. Journal of Polymer Engineering, 39(7), 597-611. https://doi.org/10.1515/polyeng-2019-0085
  • Aguele, F. O., Madufor, C. I., Adekunle, K. F. 2014. Comparative Study of Physical Properties of Polymer Composites Reinforced with Uncarbonised and Carbonised Coir. Open Journal of Polymer Chemistry, 4(3), 73-82. https://doi.org/10.4236/ojpchem.2014.43009
  • Ajith S., Sivapragasam C., Arumugaprabu V., Bharathan M., Bharathan M., Deeliban C. 2019. Mechanical Properties of Fiber Reinforced Polymer Composites. International Journal of Recent Technology and Engineering, 8(4S2), 264-267. https://doi.org/10.35940/ijrte.D1054.1284S219
  • Akaluzia, R. O., Edoziuno, F. O., Adediran, A. A., Odoni, B. U., Edibo, S., Olayanju, T. M. A. 2021. Evaluation of the effect of Reinforcement Particle Sizes on the Impact and Hardness Properties of Hardwood Charcoal Particulate-Polyester Resin Composites. Materials Today: Proceedings, 38, 570-577. https://doi.org/10.1016/j.matpr.2020.02.980
  • Altun, M., Karteri̇, İ., Güneş, M. 2017. Grafen Katkılı Odun-Plastik Nanokompozitlerinin Elektromanyetik Özellikleri ve Elektromanyetik Kalkanlama Etkinliği Karşılaştırmalı Çalışması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(1), 38-38. https://doi.org/10.17780/ksujes.304082
  • Ashok, B., Naresh, S., Reddy, K.O., Madhukar, K., Cai, J., Zhang, L., Rajulu, A.V. 2014. Tensile and Thermal Properties of Poly (Lactic Acid)/Eggshell Powder Composite Films. Int. J. Polym. Anal. Charact, 19, 245-255.
  • Ayrılmış, N., Taşdemir, M., Akbulut, T. 2017. Water Absorption and Mechanical Properties of PP/HIPS Hybrid Composites Filled with Wood Flour. Polymer Composites, 38(5), 863-869. https://doi.org/10.1002/pc.23647
  • Badayman, M., Di̇nçel Kasapoğlu, E. 2006. Evaluation of Mussel Shell Properties and Powder. Anadolu bil meslek yüksekokulu dergisi, 18(68), 177-187. https://doi.org/10.17932/IAU.ABMYOD.2006.005/abmyod_v18i68003
  • Betancourt, N., Cree, D. 2017. Investigation on the Properties of Brown Eggshell Powder Filled Poly (Lactic Acid) Composites. In Proceedings of the 2017 Canadian International Conference on Composites (CANCOM), Ottawa, ON, Canada, 1-8.
  • Beylergi̇l, B., Tanoğlu, M., Aktaş, E. 2019. Poliamid 6/6 (PA 66) Mikrofiberler ile Toklaştirilmiş Tabakali Kompozitlerin Mod-I Delaminasyon Direncinin İstatiksel Analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 429-435 https://doi.org/10.28948/ngumuh.517158
  • Bodros, E., Baley, C. 2008. Study of the Tensile Properties Of Stinging Nettle Fibres (Urtica dioica). Materials Letters, 62(14), 2143-2145. https://doi.org/10.1016/j.matlet.2007.11.034
  • Boran Torun, S. 2021. Bazı Çevresel Atıkların ve Doğal Liflerin Kompozitlerde Kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(1), 126-133. https://doi.org/10.17474/artvinofd.768285
  • Cangiotti, J., Scatto, M., Araya-Hermosilla, E., Micheletti, C., Crivellari, D., Balloni, A., Pucci, A., Benedetti, A. 2022. Valorization of Seashell Waste in Polypropylene Composites: An accessible solution to overcome marine landfilling. European Polymer Journal, 162, 110877.
  • Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W. 2008. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites. Composites Part B: Engineering, 39(6), 933-961. https://doi.org/10.1016/j.compositesb.2008.01.002
  • Gigante, V., Cinelli, P., Righetti, M. C., Sandroni, M., Tognotti, L., Seggiani, M., Lazzeri, A. 2020. Evaluation of Mussel Shells Powder as Reinforcement for PLA-Based Biocomposites. International Journal of Molecular Sciences, 21(15), 5364. https://doi.org/10.3390/ijms21155364
  • Ismail, R., Cionita, T., Lai, Y. L., Fitriyana, D. F., Siregar, J. P., Bayuseno, A. P., Nugraha, F. W., Muhamadin, R. C., Irawan, A. P., Hadi, A. E. 2022. Characterization of PLA/PCL/Green Mussel Shells Hydroxyapatite (HA) Biocomposites Prepared by Chemical Blending Methods. Materials, 15(23), 8641.
  • Kaştan A., Yalçın Y., Talaş Ş. 2016. Nano Katkıların Polimerlerin Sürtünme Katsayısına Etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 231-243.
  • Kocaman, S., Ahmetli̇, G., Soğancıoğlu, M. 2018. Doğal Atık Malzemeler ve Biyoçarları ile Biyobozunur Özellikte Yeni Epoksi-bazlı Kompozitlerin Hazırlanması ve Karakterizasyonu. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 261-272. https://doi.org/10.21605/cukurovaummfd.510034
  • Kolak, M. N., Oltulu, M. 2021. Investigation of Thermal Conductivity Properties of Polymer Based Composites Containing Waste Materials. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 13(2), 310-320. https://doi.org/10.29137/umagd.822265
  • Kundu, P. P., Biswas, J., Kim, H., Shim, S. E., Choe, S., Lee, D. S. 2004. Effect of calcite and calcite/zeolite hybrid fillers on LLDPE and PP composites. Advances in Polymer Technology, 23(3), 230-238. https://doi.org/10.1002/adv.20013
  • Kunishima, T., Nagai, Y., Bouvard, G., Abry, J.-C., Fridrici, V., Kapsa, P. 2021. Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication. Wear, 477, 203899. https://doi.org/10.1016/j.wear.2021.203899
  • Onuoha, C., Onyemaobi, O. O., Anyakwo, C. N., Onuegbu, G. C. 2017. Effect of Filler Content and Particle Size on the Mechanical Properties of Corn Cob Powder Filled Recycled Polypropylene Composites. 3(4).
  • Owuamanam, S., Cree, D. 2020. Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review. Journal of Composites Science, 4(2). https://doi.org/10.3390/jcs4020070
  • Shah, A. U. R., Prabhakar, M. N., Wang, H., Song, J. 2018. The Influence of Particle Size and Surface Treatment of Filler on the Properties of Oyster Shell Powder Filled Polypropylene Composites. Polymer Composites, 39(7), 2420-2430. https://doi.org/10.1002/pc.24225
  • Sui, G., Fuqua, M. A., Ulven, C. A., Zhong, W. H. 2009. A Plant Fiber Reinforced Polymer Composite Prepared by a Twin-Screw Extruder. Bioresource Technology, 100(3), 1246-1251. https://doi.org/10.1016/j.biortech.2008.03.065
  • Şahin, A. E., Çetin, B., Sinmazçelik, T. 2022. Effect of Mussel Shell Reinforcement on Mechanical and Tribological Behavior of Polyphenylene Sulfide Composites. Journal of Thermoplastic Composite Materials, 35(9), 1279-1302. https://doi.org/10.1177/0892705720930787
  • Thakur, V. K., Thakur, M. K. 2014. Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydrate Polymers, 109, 102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
  • Ulutaş, E. 2025. Poliamid-6/Grafen Nano Plaka (GnP) Kompozit Köpüklerin Mekanik, Termal Ve Morfolojik Özellikleri. Doktora. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Ulutaş, E., Taşdemir, M. 2024. Polipropilenin Mekanik Özelliklerine Muz ve Pirinç Kabuğu Tozlarının Etkilerinin İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(3), 1310-1319. https://doi.org/10.21597/jist.1455636
  • Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L. 2016. Utilization of Agricultural and Forest Industry Waste and Residues in Natural Fiber-Polymer Composites: A Review. Waste Management, 54, 62-73. https://doi.org/10.1016/j.wasman.2016.04.037
  • Verma, D., Gope, P. C., Maheshwari, M. K., Sharma, R. K. 2012. Bagasse Fiber Composites-A Review. J. Mater. Environ. Sci, 3(6), 1079-1092
  • Xie D., Yao S., Cao J., Hu W., Qin Y. 2020. Origin of Calcite Cements and Their Impact on Reservoir Heterogeneity in the Triassic Yanchang Formation, Ordos Basin, China: A combined petrological and geochemical study, Marine and Petroleum Geology, 117. https://doi.org/10.1016/j.marpetgeo.2020.104376
  • Xu, J., Mucalo, M. R., Pickering, K. L. 2024. Bioinspired Surface Modification of Mussel Shells and Their Application as a Biogenic Filler in Polypropylene Composites. Composites Part C: Open Access, 15, 100520. https://doi.org/10.1016/j.jcomc.2024.100520
  • Yadav, R., Singh, M., Shekhawat, D., Lee, S.-Y., Park, S.-J. 2023. The Role of Fillers to Enhance the Mechanical, Thermal, and Wear Characteristics of Polymer Composite Materials: A Review. Composites Part A: Applied Science and Manufacturing, 175, 107775. https://doi.org/10.1016/j.compositesa.2023.107775
  • Yurdakul, K.2011. Kalsiyum Karbonat Dolgulu Polietilen Filmlerinin Hazırlanması ve Geçirgenlik Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü.
  • Zare, Y. 2016. Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Composites Part A: Applied Science and Manufacturing, 84, 158-164. https://doi.org/10.1016/j.compositesa.2016.01.020

SUSTAINABLE PERFORMANCE EVALUATION OF PA6.6 COMPOSITES REINFORCED WITH COMMERCIAL CALCITE AND MUSSEL POWDER

Year 2025, Volume: 13 Issue: 3, 843 - 855, 30.09.2025
https://doi.org/10.21923/jesd.1663861

Abstract

Filler materials are widely used to enhance the mechanical properties and reduce the cost of polymer composites. The dispersion of mineral and biogenic fillers within the polymer matrix has a significant influence on the strength and toughness of the composite. In this study, the effects of separately added commercial calcite and mussel shell powder on the mechanical and morphological properties of 35% glass fiber-reinforced Polyamide 6.6 (PA6.6) were investigated. The matrix was modified by adding 10 wt%, 20 wt%, and 30 wt% of either calcite or mussel shell powder, resulting in a total of six different composite groups, along with a reference sample, for a total of seven groups. The mixtures were prepared using the extrusion process and injection molding to produce test specimens. The results demonstrated that both fillers enhanced the elastic modulus while causing a decline in tensile strength and elongation at break. A decrease of 15% in tensile strength was observed with the maximum addition of shellfish powder, while a decrease of 25% was observed with the maximum addition of calcite. A similar trend was observed in flexural tests, where a reduction in flexural strength and deformation capacity accompanied an increase in flexural modulus. Additionally, the incorporation of commercial calcite and mussel shell powder led to an increase in hardness but resulted in a notable decrease in Izod notched impact strength. Scanning electron microscopy (SEM) analyses were conducted to examine the dispersion of the fillers within the PA6.6 matrix. This study provides valuable insights into the effects of filler materials on the mechanical performance of polymer composites, offering potential applications in material design and optimization.

References

  • Adeniyi, A. G., Ighalo, J. O., Onifade, D. V. 2019. Banana and Plantain Fiber-Reinforced Polymer Composites. Journal of Polymer Engineering, 39(7), 597-611. https://doi.org/10.1515/polyeng-2019-0085
  • Aguele, F. O., Madufor, C. I., Adekunle, K. F. 2014. Comparative Study of Physical Properties of Polymer Composites Reinforced with Uncarbonised and Carbonised Coir. Open Journal of Polymer Chemistry, 4(3), 73-82. https://doi.org/10.4236/ojpchem.2014.43009
  • Ajith S., Sivapragasam C., Arumugaprabu V., Bharathan M., Bharathan M., Deeliban C. 2019. Mechanical Properties of Fiber Reinforced Polymer Composites. International Journal of Recent Technology and Engineering, 8(4S2), 264-267. https://doi.org/10.35940/ijrte.D1054.1284S219
  • Akaluzia, R. O., Edoziuno, F. O., Adediran, A. A., Odoni, B. U., Edibo, S., Olayanju, T. M. A. 2021. Evaluation of the effect of Reinforcement Particle Sizes on the Impact and Hardness Properties of Hardwood Charcoal Particulate-Polyester Resin Composites. Materials Today: Proceedings, 38, 570-577. https://doi.org/10.1016/j.matpr.2020.02.980
  • Altun, M., Karteri̇, İ., Güneş, M. 2017. Grafen Katkılı Odun-Plastik Nanokompozitlerinin Elektromanyetik Özellikleri ve Elektromanyetik Kalkanlama Etkinliği Karşılaştırmalı Çalışması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20(1), 38-38. https://doi.org/10.17780/ksujes.304082
  • Ashok, B., Naresh, S., Reddy, K.O., Madhukar, K., Cai, J., Zhang, L., Rajulu, A.V. 2014. Tensile and Thermal Properties of Poly (Lactic Acid)/Eggshell Powder Composite Films. Int. J. Polym. Anal. Charact, 19, 245-255.
  • Ayrılmış, N., Taşdemir, M., Akbulut, T. 2017. Water Absorption and Mechanical Properties of PP/HIPS Hybrid Composites Filled with Wood Flour. Polymer Composites, 38(5), 863-869. https://doi.org/10.1002/pc.23647
  • Badayman, M., Di̇nçel Kasapoğlu, E. 2006. Evaluation of Mussel Shell Properties and Powder. Anadolu bil meslek yüksekokulu dergisi, 18(68), 177-187. https://doi.org/10.17932/IAU.ABMYOD.2006.005/abmyod_v18i68003
  • Betancourt, N., Cree, D. 2017. Investigation on the Properties of Brown Eggshell Powder Filled Poly (Lactic Acid) Composites. In Proceedings of the 2017 Canadian International Conference on Composites (CANCOM), Ottawa, ON, Canada, 1-8.
  • Beylergi̇l, B., Tanoğlu, M., Aktaş, E. 2019. Poliamid 6/6 (PA 66) Mikrofiberler ile Toklaştirilmiş Tabakali Kompozitlerin Mod-I Delaminasyon Direncinin İstatiksel Analizi. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 429-435 https://doi.org/10.28948/ngumuh.517158
  • Bodros, E., Baley, C. 2008. Study of the Tensile Properties Of Stinging Nettle Fibres (Urtica dioica). Materials Letters, 62(14), 2143-2145. https://doi.org/10.1016/j.matlet.2007.11.034
  • Boran Torun, S. 2021. Bazı Çevresel Atıkların ve Doğal Liflerin Kompozitlerde Kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(1), 126-133. https://doi.org/10.17474/artvinofd.768285
  • Cangiotti, J., Scatto, M., Araya-Hermosilla, E., Micheletti, C., Crivellari, D., Balloni, A., Pucci, A., Benedetti, A. 2022. Valorization of Seashell Waste in Polypropylene Composites: An accessible solution to overcome marine landfilling. European Polymer Journal, 162, 110877.
  • Fu, S.-Y., Feng, X.-Q., Lauke, B., Mai, Y.-W. 2008. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites. Composites Part B: Engineering, 39(6), 933-961. https://doi.org/10.1016/j.compositesb.2008.01.002
  • Gigante, V., Cinelli, P., Righetti, M. C., Sandroni, M., Tognotti, L., Seggiani, M., Lazzeri, A. 2020. Evaluation of Mussel Shells Powder as Reinforcement for PLA-Based Biocomposites. International Journal of Molecular Sciences, 21(15), 5364. https://doi.org/10.3390/ijms21155364
  • Ismail, R., Cionita, T., Lai, Y. L., Fitriyana, D. F., Siregar, J. P., Bayuseno, A. P., Nugraha, F. W., Muhamadin, R. C., Irawan, A. P., Hadi, A. E. 2022. Characterization of PLA/PCL/Green Mussel Shells Hydroxyapatite (HA) Biocomposites Prepared by Chemical Blending Methods. Materials, 15(23), 8641.
  • Kaştan A., Yalçın Y., Talaş Ş. 2016. Nano Katkıların Polimerlerin Sürtünme Katsayısına Etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 231-243.
  • Kocaman, S., Ahmetli̇, G., Soğancıoğlu, M. 2018. Doğal Atık Malzemeler ve Biyoçarları ile Biyobozunur Özellikte Yeni Epoksi-bazlı Kompozitlerin Hazırlanması ve Karakterizasyonu. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 261-272. https://doi.org/10.21605/cukurovaummfd.510034
  • Kolak, M. N., Oltulu, M. 2021. Investigation of Thermal Conductivity Properties of Polymer Based Composites Containing Waste Materials. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 13(2), 310-320. https://doi.org/10.29137/umagd.822265
  • Kundu, P. P., Biswas, J., Kim, H., Shim, S. E., Choe, S., Lee, D. S. 2004. Effect of calcite and calcite/zeolite hybrid fillers on LLDPE and PP composites. Advances in Polymer Technology, 23(3), 230-238. https://doi.org/10.1002/adv.20013
  • Kunishima, T., Nagai, Y., Bouvard, G., Abry, J.-C., Fridrici, V., Kapsa, P. 2021. Comparison of the tribological properties of carbon/glass fiber reinforced PA66-based composites in contact with steel, with and without grease lubrication. Wear, 477, 203899. https://doi.org/10.1016/j.wear.2021.203899
  • Onuoha, C., Onyemaobi, O. O., Anyakwo, C. N., Onuegbu, G. C. 2017. Effect of Filler Content and Particle Size on the Mechanical Properties of Corn Cob Powder Filled Recycled Polypropylene Composites. 3(4).
  • Owuamanam, S., Cree, D. 2020. Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review. Journal of Composites Science, 4(2). https://doi.org/10.3390/jcs4020070
  • Shah, A. U. R., Prabhakar, M. N., Wang, H., Song, J. 2018. The Influence of Particle Size and Surface Treatment of Filler on the Properties of Oyster Shell Powder Filled Polypropylene Composites. Polymer Composites, 39(7), 2420-2430. https://doi.org/10.1002/pc.24225
  • Sui, G., Fuqua, M. A., Ulven, C. A., Zhong, W. H. 2009. A Plant Fiber Reinforced Polymer Composite Prepared by a Twin-Screw Extruder. Bioresource Technology, 100(3), 1246-1251. https://doi.org/10.1016/j.biortech.2008.03.065
  • Şahin, A. E., Çetin, B., Sinmazçelik, T. 2022. Effect of Mussel Shell Reinforcement on Mechanical and Tribological Behavior of Polyphenylene Sulfide Composites. Journal of Thermoplastic Composite Materials, 35(9), 1279-1302. https://doi.org/10.1177/0892705720930787
  • Thakur, V. K., Thakur, M. K. 2014. Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydrate Polymers, 109, 102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
  • Ulutaş, E. 2025. Poliamid-6/Grafen Nano Plaka (GnP) Kompozit Köpüklerin Mekanik, Termal Ve Morfolojik Özellikleri. Doktora. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Ulutaş, E., Taşdemir, M. 2024. Polipropilenin Mekanik Özelliklerine Muz ve Pirinç Kabuğu Tozlarının Etkilerinin İncelenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(3), 1310-1319. https://doi.org/10.21597/jist.1455636
  • Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L. 2016. Utilization of Agricultural and Forest Industry Waste and Residues in Natural Fiber-Polymer Composites: A Review. Waste Management, 54, 62-73. https://doi.org/10.1016/j.wasman.2016.04.037
  • Verma, D., Gope, P. C., Maheshwari, M. K., Sharma, R. K. 2012. Bagasse Fiber Composites-A Review. J. Mater. Environ. Sci, 3(6), 1079-1092
  • Xie D., Yao S., Cao J., Hu W., Qin Y. 2020. Origin of Calcite Cements and Their Impact on Reservoir Heterogeneity in the Triassic Yanchang Formation, Ordos Basin, China: A combined petrological and geochemical study, Marine and Petroleum Geology, 117. https://doi.org/10.1016/j.marpetgeo.2020.104376
  • Xu, J., Mucalo, M. R., Pickering, K. L. 2024. Bioinspired Surface Modification of Mussel Shells and Their Application as a Biogenic Filler in Polypropylene Composites. Composites Part C: Open Access, 15, 100520. https://doi.org/10.1016/j.jcomc.2024.100520
  • Yadav, R., Singh, M., Shekhawat, D., Lee, S.-Y., Park, S.-J. 2023. The Role of Fillers to Enhance the Mechanical, Thermal, and Wear Characteristics of Polymer Composite Materials: A Review. Composites Part A: Applied Science and Manufacturing, 175, 107775. https://doi.org/10.1016/j.compositesa.2023.107775
  • Yurdakul, K.2011. Kalsiyum Karbonat Dolgulu Polietilen Filmlerinin Hazırlanması ve Geçirgenlik Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü.
  • Zare, Y. 2016. Study of Nanoparticles Aggregation/Agglomeration in Polymer Particulate Nanocomposites by Mechanical Properties. Composites Part A: Applied Science and Manufacturing, 84, 158-164. https://doi.org/10.1016/j.compositesa.2016.01.020
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Polymer Science and Technologies
Journal Section Research Articles
Authors

Elif Ulutaş 0000-0001-7753-8878

Münir Taşdemir 0000-0001-8635-7251

Publication Date September 30, 2025
Submission Date March 23, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Ulutaş, E., & Taşdemir, M. (2025). TİCARİ KALSİT VE MİDYE TOZU TAKVİYELİ PA6.6 KOMPOZİTLERİN SÜRDÜRÜLEBİLİR PERFORMANS DEĞERLENDİRMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(3), 843-855. https://doi.org/10.21923/jesd.1663861