Research Article
BibTex RIS Cite

EVALUATION OF VERMICOMPOSTING POTENTIAL OF PRE-COMPOSTS PREPARED WITH POMEGRANATE PROCESSING WASTES FROM FRUIT JUICE INDUSTRY

Year 2025, Volume: 13 Issue: 3, 979 - 989, 30.09.2025
https://doi.org/10.21923/jesd.1729610

Abstract

Composting is the process of converting organic wastes into a soil improving product through biological processes.. In this study, the suitability of pomegranate processing wastes from fruit juice industry for vermicomposting was investigated by pre-composting with cattle manure, chicken manure and straw wastes. The vermicomposting process was carried out under laboratory conditions in five separate plastic containers of 38 L volume using Eisenia fetida species earthworms for 150 days. The physicochemical properties and germination index results of the vermicomposts obtained at the end of the application were evaluated. While the initial carbon/nitrogen (C/N) ratios of vermicompost mixtures were in the range of 11,70-12,50, these ratios decreased at the end of the process and realized in the range of 9,95-10,20. The highest earthworm reproduction was realized in the K4 mixture with 2.563 individuals; the highest mass and volume losses were experienced in the same mixture and these losses were calculated as 13,5% and 24,0%, respectively. The resulting earthworm composts met the criteria of organic matter content (≥40%) and C/N ratio (8-22) as specified in the Türkiye national legislation. This has resulted in a soil amendment that is rich in organic matter and balanced in terms of carbon and nitrogen for plants. Furthermore, according to the germination index test, no phytotoxicity was observed at application doses of 25% and 50%.

References

  • Ananthavalli, R., Ramadas, V., John Paul, J.A., Karunai Selvi, B., Karmegam, N., 2019. Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour. Technol. 275, 394-401.
  • APHA. 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, Washington, DC, USA.
  • Bhat, S.A., Singh, S., Singh, J., Kumar, S., Bhawana, Vig, A.P., 2018. Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour. Technol. 252, 172–179.
  • Biruntha, M., Karmegam, N., Jeyaprakasam, A., Selvi, B.K., Paul, J.A.J., Balamurali krishnan, B., Chang, S.W., Ravindran, B., 2020.Vermiconversion of biowastes with low-to-high C/N ratio into value added Vermicompost. Bioresour. Technol. 297, 122398.
  • Boran, D., 2015. Farklı Isıl Teknikleri Uygulanmış Solucan Gübresinin Kalite Parametrelerinin Belirlenmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Boruah, T., Barman, A., Kalita, P., Lahkar, J., Deka, H., 2019. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresour. Technol. 294, 122147.
  • Chattopadhyay, G.N., 2012. Use of vermicomposting biotechnology for recycling organic wastes in agriculture. Int. J. Recycl. Org. Waste Agric. 1, 1–6.
  • Devi, C., Khwairakpam, M., 2020. Bioconversion of Lantana camara by vermicomposting with two different earthworm species in monoculture. Bioresour. Technol. 296, 122308.
  • El-Haddad, M.E., Zayed, M.S., El-Sayed, G.A.M., Hassanein, M.K., El-Satar, A.M.A., 2014. Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annu. Agric. Sci. 59, 243-251.
  • Fayolle, L., Michaud, H., Cluzeau, D., Stawiecki, J., 1997. Influence of temperature and food source on the life cycle of the earthworm Dendrobaena veneta (Oligochaeta). Soil Biol. Biochem. 29, 747-750.
  • Gasch, C.K., Utter, R. and Wick, A.F., 2021. Distribution of earthworm growth stages along a naturally occurring soil salinity gradient. Soil Organisms 93 (3).
  • Gunadi, B., Blount, C., Edwards, C.A., 2002. The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia 46 (1), 15–23.
  • Gupta, R., Garg, V.K., 2011. Potential and possibilities of vermicomposting in sustainable solid waste management: a review. Int. J. Environ. Waste Manage. 7 (3–4), 210–234.
  • Javed, F., Hashmi, I., 2021. Vermiremediation–remediation of soil contaminated with oil using earthworm (Eisenia fetida). In: Soil and Sediment Contamination, vol. 30. Bellwether Publishing, Ltd, pp. 639–662.
  • Kaviraj, Sharma, S., 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol. 90, 169–173.
  • Mago, M., Yadav, A., Gupta, R., Garg, V.K., 2021. Management of banana crop waste biomass using vermicomposting technology, Bioresource Technology 326.
  • Mulvaney, R.L.1996. “Methods of soil analysis, Part 3, Chemical Methods, nitrogen–inorganic forms,” In Sparks DL (ed.) SSSA Book Ser. 5. Soil Sci. Soc. Am., Madison, WI, USA; pp 1123-1184.
  • Ndegwa, P.M., Thompson, S.A., Das, K.C. 2000. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technology. 71(1), 5-12.
  • Resmi Gazete, 2018. Tarımda Kullanılan Organik, Mineral ve Mikrobiyal Kaynaklı Gübrelere Dair Yönetmelik. Tarih: 23.02.2018, Sayı: 30341.
  • Şevik, F., 2022. Sabit C/N Oranında ve Farklı Serbest Hava Boşluğu Oranlarında Hayvansal ve Bitkisel Atıklardan Kompost ve Solucan Kompostu Üretimi ve Elde Edilen Kompostların Zenginleştirilmesi: Nar İşleme Atığı Örneği, Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.
  • Sharma, K., Garg, V.K. 2018. Solid-state fermentation for vermicomposting, in: Current Developments in Biotechnology and Bioengineering, 373-413.
  • Sharma, K., Garg, V.K., 2019. Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida. Environ. Sci. Pollut. Res. 26, 14024–14035.
  • Shi, Z., Liu, J., Tang, Z., Zhao, Y., Wang, C., 2020. Vermiremediation of organically contaminated soils: concepts, current status, and future perspectives. Appl. Soil Ecol. 147, 103377
  • Silva, J.C., Siqueira, A.J.N., Maia, H.B., Nunes, R.R. 2021. Vermicomposting corn waste under cultural and climatic conditions of the Brazilian Backwoods. Bioresource Technology Reports. 15, 100730.
  • Song, X., Liu, M., Wu, D., Qi, L., Ye, X., Jiao, J., Hu, F., 2014. Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manage. 34, 1977–1983.
  • Sülük, K., Tosun, İ., Ekinci, K., 2023. Elma İşleme Atıkları Kompostundan Solucan Kompostu Üretimi, Mühendislik Bilimleri ve Tasarım Dergisi, 11(2), 844-856.
  • Sülük K., Coşkun S., Budak H. N., 2024. Importance of Waste Management in terms of Quality Management System in Food Industry: Fruit Juice Concentrate Facility. New Studies in Engineering. İzmir, (pp. 19-31). Duvar Y.
  • Taeporamaysamai, O. ve Ratanatamskul, C., 2016. Co-composting of various organic substrates from municipal solid waste using an on-site prototype vermicomposting reactor, International Biodeterioration & Biodegradation 113, 357-366.
  • USCC. 2002. The US Composting Council Research and Education Foundation, and the United States Department of Agriculture. Test methods for the examination of composting and compost (TMECC). Edaphos International, Houston, TX.
  • Yadav, A., Garg, V.K. 2019. Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresource Technology. 274, 512-517.
  • Zucconi, F.M., Forte, M., Monaco, A., De Bertoldi, M. 1981. Biological evaluation of compost maturity. BioCycle. 22, 27–29.

MEYVE SUYU ENDÜSTRİSİNDEN KAYNAKLANAN NAR İŞLEME ATIKLARI İLE HAZIRLANAN ÖN KOMPOSTLARIN VERMİKOMPOSTLAMA POTANSİYELİNİN DEĞERLENDİRİLMESİ

Year 2025, Volume: 13 Issue: 3, 979 - 989, 30.09.2025
https://doi.org/10.21923/jesd.1729610

Abstract

Kompostlaştırma, organik içerikli atıkların biyolojik süreçler aracılığıyla toprak iyileştirici bir ürüne dönüştürülmesi işlemidir. Bu çalışmada, meyve suyu endüstrisinden kaynaklanan nar işleme atıklarının; sığır gübresi, tavuk gübresi ve saman atıkları ile birlikte ön kompostlanması sonucu elde edilen karışımların solucanlı kompostlaştırmaya (vermikompostlamaya) uygunluğu araştırılmıştır. Vermikompostlama işlemi laboratuvar şartlarında, 38 L hacmindeki beş ayrı plastik kapta, Eisenia fetida türü solucanlar kullanılarak 150 gün süreyle yürütülmüştür. Uygulama sonunda elde edilen vermikompostların fizikokimyasal özellikleri ve çimlenme indeksi sonuçları değerlendirilmiştir. Vermikompost karışımlarının başlangıçtaki karbon/azot (C/N) oranları 11,70–12,50 aralığında iken, proses sonunda düşerek bu oranlar 9,95–10,20 aralığında gerçekleşmiştir. Solucan çoğalması en fazla, 2.563 bireyle K4 karışımında gerçekleşmiş; aynı karışımda en yüksek kütle ve hacim kaybı yaşanmış ve bu kayıplar sırasıyla %13,5 ve %24,0 olarak hesaplanmıştır. Elde edilen solucan kompostları, Türkiye ulusal mevzuatında belirtilen organik madde oranı (≥%40) ve C/N oranı (8–22) kriterlerini sağlamıştır. Bu sayede bitkiler için organik maddece zengin ve karbon-azot açısından dengeli bir toprak iyileştirici elde edilmiştir. Ayrıca, çimlenme indeksi testine göre %25 ve %50’lik uygulama dozlarında fitotoksisite gözlenmemiştir.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Thanks

Bu çalışma Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince Desteklenmiştir. Proje Numarası: FDK-2018-5778.

References

  • Ananthavalli, R., Ramadas, V., John Paul, J.A., Karunai Selvi, B., Karmegam, N., 2019. Seaweeds as bioresources for vermicompost production using the earthworm, Perionyx excavatus (Perrier). Bioresour. Technol. 275, 394-401.
  • APHA. 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, Washington, DC, USA.
  • Bhat, S.A., Singh, S., Singh, J., Kumar, S., Bhawana, Vig, A.P., 2018. Bioremediation and detoxification of industrial wastes by earthworms: vermicompost as powerful crop nutrient in sustainable agriculture. Bioresour. Technol. 252, 172–179.
  • Biruntha, M., Karmegam, N., Jeyaprakasam, A., Selvi, B.K., Paul, J.A.J., Balamurali krishnan, B., Chang, S.W., Ravindran, B., 2020.Vermiconversion of biowastes with low-to-high C/N ratio into value added Vermicompost. Bioresour. Technol. 297, 122398.
  • Boran, D., 2015. Farklı Isıl Teknikleri Uygulanmış Solucan Gübresinin Kalite Parametrelerinin Belirlenmesi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
  • Boruah, T., Barman, A., Kalita, P., Lahkar, J., Deka, H., 2019. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresour. Technol. 294, 122147.
  • Chattopadhyay, G.N., 2012. Use of vermicomposting biotechnology for recycling organic wastes in agriculture. Int. J. Recycl. Org. Waste Agric. 1, 1–6.
  • Devi, C., Khwairakpam, M., 2020. Bioconversion of Lantana camara by vermicomposting with two different earthworm species in monoculture. Bioresour. Technol. 296, 122308.
  • El-Haddad, M.E., Zayed, M.S., El-Sayed, G.A.M., Hassanein, M.K., El-Satar, A.M.A., 2014. Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annu. Agric. Sci. 59, 243-251.
  • Fayolle, L., Michaud, H., Cluzeau, D., Stawiecki, J., 1997. Influence of temperature and food source on the life cycle of the earthworm Dendrobaena veneta (Oligochaeta). Soil Biol. Biochem. 29, 747-750.
  • Gasch, C.K., Utter, R. and Wick, A.F., 2021. Distribution of earthworm growth stages along a naturally occurring soil salinity gradient. Soil Organisms 93 (3).
  • Gunadi, B., Blount, C., Edwards, C.A., 2002. The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia 46 (1), 15–23.
  • Gupta, R., Garg, V.K., 2011. Potential and possibilities of vermicomposting in sustainable solid waste management: a review. Int. J. Environ. Waste Manage. 7 (3–4), 210–234.
  • Javed, F., Hashmi, I., 2021. Vermiremediation–remediation of soil contaminated with oil using earthworm (Eisenia fetida). In: Soil and Sediment Contamination, vol. 30. Bellwether Publishing, Ltd, pp. 639–662.
  • Kaviraj, Sharma, S., 2003. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms. Bioresour. Technol. 90, 169–173.
  • Mago, M., Yadav, A., Gupta, R., Garg, V.K., 2021. Management of banana crop waste biomass using vermicomposting technology, Bioresource Technology 326.
  • Mulvaney, R.L.1996. “Methods of soil analysis, Part 3, Chemical Methods, nitrogen–inorganic forms,” In Sparks DL (ed.) SSSA Book Ser. 5. Soil Sci. Soc. Am., Madison, WI, USA; pp 1123-1184.
  • Ndegwa, P.M., Thompson, S.A., Das, K.C. 2000. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource Technology. 71(1), 5-12.
  • Resmi Gazete, 2018. Tarımda Kullanılan Organik, Mineral ve Mikrobiyal Kaynaklı Gübrelere Dair Yönetmelik. Tarih: 23.02.2018, Sayı: 30341.
  • Şevik, F., 2022. Sabit C/N Oranında ve Farklı Serbest Hava Boşluğu Oranlarında Hayvansal ve Bitkisel Atıklardan Kompost ve Solucan Kompostu Üretimi ve Elde Edilen Kompostların Zenginleştirilmesi: Nar İşleme Atığı Örneği, Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Isparta.
  • Sharma, K., Garg, V.K. 2018. Solid-state fermentation for vermicomposting, in: Current Developments in Biotechnology and Bioengineering, 373-413.
  • Sharma, K., Garg, V.K., 2019. Recycling of lignocellulosic waste as vermicompost using earthworm Eisenia fetida. Environ. Sci. Pollut. Res. 26, 14024–14035.
  • Shi, Z., Liu, J., Tang, Z., Zhao, Y., Wang, C., 2020. Vermiremediation of organically contaminated soils: concepts, current status, and future perspectives. Appl. Soil Ecol. 147, 103377
  • Silva, J.C., Siqueira, A.J.N., Maia, H.B., Nunes, R.R. 2021. Vermicomposting corn waste under cultural and climatic conditions of the Brazilian Backwoods. Bioresource Technology Reports. 15, 100730.
  • Song, X., Liu, M., Wu, D., Qi, L., Ye, X., Jiao, J., Hu, F., 2014. Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manage. 34, 1977–1983.
  • Sülük, K., Tosun, İ., Ekinci, K., 2023. Elma İşleme Atıkları Kompostundan Solucan Kompostu Üretimi, Mühendislik Bilimleri ve Tasarım Dergisi, 11(2), 844-856.
  • Sülük K., Coşkun S., Budak H. N., 2024. Importance of Waste Management in terms of Quality Management System in Food Industry: Fruit Juice Concentrate Facility. New Studies in Engineering. İzmir, (pp. 19-31). Duvar Y.
  • Taeporamaysamai, O. ve Ratanatamskul, C., 2016. Co-composting of various organic substrates from municipal solid waste using an on-site prototype vermicomposting reactor, International Biodeterioration & Biodegradation 113, 357-366.
  • USCC. 2002. The US Composting Council Research and Education Foundation, and the United States Department of Agriculture. Test methods for the examination of composting and compost (TMECC). Edaphos International, Houston, TX.
  • Yadav, A., Garg, V.K. 2019. Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresource Technology. 274, 512-517.
  • Zucconi, F.M., Forte, M., Monaco, A., De Bertoldi, M. 1981. Biological evaluation of compost maturity. BioCycle. 22, 27–29.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Waste Management, Reduction, Reuse and Recycling
Journal Section Research Articles
Authors

Fevzi Şevik 0000-0002-7047-694X

İsmail Tosun 0000-0003-4296-9883

Kamil Ekinci 0000-0002-7083-5199

Publication Date September 30, 2025
Submission Date June 28, 2025
Acceptance Date September 1, 2025
Published in Issue Year 2025 Volume: 13 Issue: 3

Cite

APA Şevik, F., Tosun, İ., & Ekinci, K. (2025). MEYVE SUYU ENDÜSTRİSİNDEN KAYNAKLANAN NAR İŞLEME ATIKLARI İLE HAZIRLANAN ÖN KOMPOSTLARIN VERMİKOMPOSTLAMA POTANSİYELİNİN DEĞERLENDİRİLMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(3), 979-989. https://doi.org/10.21923/jesd.1729610