Year 2025,
Volume: 2 Issue: 1, 1 - 12, 31.07.2025
Dıckson Davıd Olodu
,
Andrew Erameh
,
Osagie Imevbore Ihenyen
,
Francis Inegbedion
References
-
Abdelsattar, M., Mesalam, A., Fawzi, A.-K., & Hamdan, I. (2024). Optimal design and analyzing the techno-economic-environmental viability for different configurations of an autonomous hybrid power system. https://doi.org/10.1007/s00202-024-02252-8
-
Ali, M. M., & Mohammed, N. (2024). Optimal sizing of hybrid renewable energy systems using quasi-optimal control. Renewable Energy. https://doi.org/10.1016/j.renene.2024.120351
-
Al‐Quraan, A., Al-Mhairat, B., Koran, A., & Radaideh, A. (2025). Performance Improvement of a Standalone Hybrid Renewable Energy System Using a Bi-Level Predictive Optimization Technique. Sustainability, 17(2), 725. https://doi.org/10.3390/su17020725
-
Atawi, I. E., Abuelrub, A., Al-Shetwi, A. Q., & Albalawi, O. H. (2024). Design of a wind-PV system integrated with a hybrid energy storage system considering economic and reliability assessment. Journal of Energy Storage. https://doi.org/10.1016/j.est.2023.110405
-
Babaei, R., Ting, D. S. ‐K., & Carriveau, R. (2025). Feasibility and optimization of hybrid energy systems for sustainable electricity, heat, and fresh water production in a rural community. International Journal of Green Energy, 1–19. https://doi.org/10.1080/15435075.2024.2448292
-
Bhimaraju, A., Sushnigdha, G., Mahesh, A., & Raman, K. (2024). Techno-Economic Optimization of Hybrid Renewable Energy System for the Fueling of City Transportation. 1–6. https://doi.org/10.1109/sefet61574.2024.10718003
-
Big‐Alabo, A. (2024). Design Optimization of a Hybrid Solar PV Panel and Pumped Hydro Energy Supply System. Journal of Computational Mechanics, Power System and Control, 7(2), 53–75. https://doi.org/10.46253/jcmps.v7i2.a5
-
Bisht, Y. S., Poornima, E., Aysola, S. C., Sood, S., Balassem, Z. A., Kumar, S., Cajla, P., & Khandelwal, U. (2024). Hybrid Renewable Energy System Design using Multi-Objective Optimization. E3S Web of Conferences, 581, 01036. https://doi.org/10.1051/e3sconf/202458101036
-
Castorino, G. A. M., Losi, E., Manservigi, L., Pinelli, M., Spina, P. R., & Venturini, M. (2024). Energy and Economic Optimization of the Design and Operation of Hybrid Energy Plants Under Current and Future Economic Scenarios. https://doi.org/10.1115/gt2024-121980
-
Choudhary, J., Ram, M., & Bhandari, A. S. (2024). Sustainable hybrid energy system’s reliability optimization by solving RRAP-CM with integration of metaheuristic approaches. Management of Environmental Quality: An International Journal. https://doi.org/10.1108/meq-02-2024-0061
-
Dwijendra, N. K. A., Sharma, S., Asary, A. R., Majdi, A., Muda, I., Mutlak, D. A., Parra, R. M. R., & Hammid, A. T. (2022). Economic Performance of a Hybrid Renewable Energy System with Optimal Design of Resources. Environmental and Climate Technologies, 26(1), 441–453. https://doi.org/10.2478/rtuect-2022-0034
-
Furlan, G., & You, F. (2024). Robust Design of Hybrid Solar Power Systems: Sustainable Integration of Concentrated Solar Power and Photovoltaic Technologies. Advances in Applied Energy. https://doi.org/10.1016/j.adapen.2024.100164
-
Ghandehariun, S., Ghandehariun, A. M., & Ziabari, N. B. (2024). Complementary Assessment and Design Optimization of a Hybrid Renewable Energy System Integrated with Pumped Hydro Energy Storage with Natural Intake. Renewable Energy. https://doi.org/10.1016/j.renene.2024.120557
-
Ghige, O., & William, P. (2024). Empowering India’s Energy Future: Solar-Wind Hybrid Systems for Sustainable Development. 1–6. https://doi.org/10.1109/asiancon62057.2024.10837972
-
Gurumoorthi, G., Senthilkumar, S., Karthikeyan, G., & Alsaif, F. (2024). A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems. Dental Science Reports, 14(1). https://doi.org/10.1038/s41598-024-69483-4
-
Ha, H.-T., Truong, L. H. V., Hoang, T. V., & Vu, T. H. (2024). Application Of Combined Renewable Energy for Power Generation. 99–103. https://doi.org/10.1109/atigb63471.2024.10717812
-
Hidayat, B. S., Nahor, K. M. B., Hariyanto, N., & Pandi, P. (2024). Optimization of Hybrid Power Plant Planning Based on Solar, Wind, and Ocean-Wave Energy in Isolated Microgrid. 1–6. https://doi.org/10.1109/icpere63447.2024.10845358
-
Joshi, S. N., Aeidapu, M., & Ambati, B. (2024). Optimal Design of a Hybrid Renewable Energy System with PV, WT, and Hydrogen Energy Storage Using Improved Search Space Reduction Algorithm. 1–6. https://doi.org/10.1109/sefet61574.2024.10717953
-
Khaled, K. (2025). A Review on Designing Hybrid Energy Systems for Renewable Integration. 3(2), 21–32. https://doi.org/10.54216/mor.030203
-
Khalid, W., Awais, Q., Jamil, M., & Khan, A. A. (2024). Dynamic Simulation and Optimization of Off-Grid Hybrid Power Systems for Sustainable Rural Development. Electronics, 13(13), 2487. https://doi.org/10.3390/electronics13132487
-
Kumar GB, A., Balamurugan, M., Sunil Kumar, K. N., & Gatti, R. (2024). Design and control of a grid-connected solar-wind hybrid sustainable energy generation systems using DFIG. International Journal of Applied Power Engineering, 14(1), 188. https://doi.org/10.11591/ijape.v14.i1.pp188-201
-
Lujano-Rojas, J. M., Dufo-López, R., Artal-Sevil, J. S., & Garcia-Paricio, E. (2024). Design of Small-Scale Hybrid Energy Systems Taking into Account Generation and Demand Uncertainties. Renewable Energy. https://doi.org/10.1016/j.renene.2024.120540
-
ahmoudi, S. M., Maleki, A., & Rezaei Ochbelagh, D. (2025). Multi-objective optimization of hybrid energy systems using gravitational search algorithm. Dental Science Reports, 15(1). https://doi.org/10.1038/s41598-025-86476-z
-
Maggu, P., Singh, S., Sinha, A., Biamba, C., Iwendi, C., & Hashmi, A. (2024). Sustainable and optimized power solution using hybrid energy system. Energy Exploration & Exploitation. https://doi.org/10.1177/01445987241284689
-
Mathaba, T. N. D., & Abo‐Al‐Ez, K. M. (2024). Design of Hybrid Renewable Energy Systems: Integrating Multi‐Objective Optimization into a Multi‐Criteria Decision‐Making Framework. Engineering Reports. https://doi.org/10.1002/eng2.13074
-
Mouli, C. (2024). Design and development of hybrid power generation by solar and wind energy. Indian Scientific Journal of Research in Engineering and Management, 08(03), 1–5. https://doi.org/10.55041/ijsrem29722
-
Murugeswari, P., Selvaperumal, S., & Nagalakshmi, S. (2024). Design analysis of hybrid solar-wind renewable energy systems using water strider optimization. Physica Scripta. https://doi.org/10.1088/1402-4896/ad25af
-
Olodu, D. D., & Erameh, A. (2023). Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa. Black Sea Journal of Engineering and Science, 6(3), 296-307. https://doi.org/10.34248/bsengineering.1195247
-
Olodu, D. D., Ihenyen, O. I., & Inegbedion, F. (2025). Advances in renewable energy systems: Integrating solar, wind, and hydropower for a carbon-neutral future. International Journal of Novel Findings in Engineering, Science and Technology (IJONFEST), 3(1), 14–24. https://doi.org/10.61150/ijonfest.2025030102
-
Shklyarskiy, Y., Skvortsov, I. M., Sutikno, T., & Manap, M. (2024). The optimization technique for a hybrid renewable energy system based on solar-hydrogen generation. International Journal of Power Electronics and Drive Systems, 15(1), 639. https://doi.org/10.11591/ijpeds.v15.i1.pp639-650
-
Sibarani, M. B., Jufri, F. H., Samual, M. G., Widayat, A. A., & Sudiarto, B. (2024). A Design of Economically Feasible Hybrid Energy System with Renewable Energy Ratio Priority. International Journal of Electrical, Computer, Biomedical Engineering, 2(2). https://doi.org/10.62146/ijecbe.v2i2.60
-
Sifakis, N., Savvakis, N., Petropoulou, M., & Arampatzis, G. (2024). Techno-economic optimization of a novel industrial hybrid renewable energy system based on the waste-to-X principle. Energy Conversion and Management, 313, 118613. https://doi.org/10.1016/j.enconman.2024.118613
-
Tao, L., Wang, B., Su, Y., & Li, C. (2024). Novel Power System Design and Optimization Based on Renewable Energy Integration. Frontiers in Artificial Intelligence and Applications. https://doi.org/10.3233/faia241144
-
Vendoti, S., Muralidhar, M., Kiranmayi, R., Victoria, D., & Kishore, D. R. (2024). Design and Modeling of Hybrid Renewable Energy Systems for Optimized Power Generation (pp. 350–371). IGI Global. https://doi.org/10.4018/979-8-3693-3735-6.ch016
-
Yadegari, M. H., Sahebi, H., Razm, S., & Ashayeri, J. (2023). A sustainable multi-objective optimization model for the design of hybrid power supply networks under uncertainty. Renewable Energy, 219, 119443. https://doi.org/10.1016/j.renene.2023.119443
-
Zhou, Y., Chen, Z., Gong, Z., Chen, P., & Razmjooy, S. (2024). The improved aquila optimization approach for cost-effective design of hybrid renewable energy systems. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e27281
Design and Optimization of a Hybrid Renewable Energy System for Sustainable Power Generation
Year 2025,
Volume: 2 Issue: 1, 1 - 12, 31.07.2025
Dıckson Davıd Olodu
,
Andrew Erameh
,
Osagie Imevbore Ihenyen
,
Francis Inegbedion
Abstract
The growing demand for sustainable energy solutions necessitates the integration of renewable energy sources into hybrid systems. This study presents the design and optimization of a hybrid renewable energy system combining solar, wind, and diesel power to ensure reliable and cost-effective electricity generation. A detailed numerical analysis evaluates the system’s technical, economic, and environmental performance. Solar resource assessment indicates an average daily radiation of 5.1 kWh/m², while wind speeds range between 4.3 m/s and 5.4 m/s, supporting complementary energy generation. The optimized system achieves an 85% renewable energy fraction, with solar contributing 45.2%, wind 38.7%, and diesel 16.1%. Economic evaluation reveals an investment cost of ₦7,400,000, with a levelized cost of energy (LCOE) of ₦55.2/kWh and a payback period of 6.5 years. Sensitivity analysis confirms financial feasibility under varying input parameters. The system reduces carbon emissions by 73.3% compared to diesel-only alternatives, enhancing environmental sustainability. Reliability assessments show 97.2% system availability with a low Loss of Power Supply Probability (LPSP) of 2.8%.
This research demonstrates the viability of hybrid renewable energy systems as a sustainable power solution, contributing to global decarbonization efforts. The findings underscore the importance of optimizing energy storage and implementing advanced control strategies to enhance efficiency and economic viability. Future studies should explore the integration of artificial intelligence-based predictive models to further improve system performance and reliability.
References
-
Abdelsattar, M., Mesalam, A., Fawzi, A.-K., & Hamdan, I. (2024). Optimal design and analyzing the techno-economic-environmental viability for different configurations of an autonomous hybrid power system. https://doi.org/10.1007/s00202-024-02252-8
-
Ali, M. M., & Mohammed, N. (2024). Optimal sizing of hybrid renewable energy systems using quasi-optimal control. Renewable Energy. https://doi.org/10.1016/j.renene.2024.120351
-
Al‐Quraan, A., Al-Mhairat, B., Koran, A., & Radaideh, A. (2025). Performance Improvement of a Standalone Hybrid Renewable Energy System Using a Bi-Level Predictive Optimization Technique. Sustainability, 17(2), 725. https://doi.org/10.3390/su17020725
-
Atawi, I. E., Abuelrub, A., Al-Shetwi, A. Q., & Albalawi, O. H. (2024). Design of a wind-PV system integrated with a hybrid energy storage system considering economic and reliability assessment. Journal of Energy Storage. https://doi.org/10.1016/j.est.2023.110405
-
Babaei, R., Ting, D. S. ‐K., & Carriveau, R. (2025). Feasibility and optimization of hybrid energy systems for sustainable electricity, heat, and fresh water production in a rural community. International Journal of Green Energy, 1–19. https://doi.org/10.1080/15435075.2024.2448292
-
Bhimaraju, A., Sushnigdha, G., Mahesh, A., & Raman, K. (2024). Techno-Economic Optimization of Hybrid Renewable Energy System for the Fueling of City Transportation. 1–6. https://doi.org/10.1109/sefet61574.2024.10718003
-
Big‐Alabo, A. (2024). Design Optimization of a Hybrid Solar PV Panel and Pumped Hydro Energy Supply System. Journal of Computational Mechanics, Power System and Control, 7(2), 53–75. https://doi.org/10.46253/jcmps.v7i2.a5
-
Bisht, Y. S., Poornima, E., Aysola, S. C., Sood, S., Balassem, Z. A., Kumar, S., Cajla, P., & Khandelwal, U. (2024). Hybrid Renewable Energy System Design using Multi-Objective Optimization. E3S Web of Conferences, 581, 01036. https://doi.org/10.1051/e3sconf/202458101036
-
Castorino, G. A. M., Losi, E., Manservigi, L., Pinelli, M., Spina, P. R., & Venturini, M. (2024). Energy and Economic Optimization of the Design and Operation of Hybrid Energy Plants Under Current and Future Economic Scenarios. https://doi.org/10.1115/gt2024-121980
-
Choudhary, J., Ram, M., & Bhandari, A. S. (2024). Sustainable hybrid energy system’s reliability optimization by solving RRAP-CM with integration of metaheuristic approaches. Management of Environmental Quality: An International Journal. https://doi.org/10.1108/meq-02-2024-0061
-
Dwijendra, N. K. A., Sharma, S., Asary, A. R., Majdi, A., Muda, I., Mutlak, D. A., Parra, R. M. R., & Hammid, A. T. (2022). Economic Performance of a Hybrid Renewable Energy System with Optimal Design of Resources. Environmental and Climate Technologies, 26(1), 441–453. https://doi.org/10.2478/rtuect-2022-0034
-
Furlan, G., & You, F. (2024). Robust Design of Hybrid Solar Power Systems: Sustainable Integration of Concentrated Solar Power and Photovoltaic Technologies. Advances in Applied Energy. https://doi.org/10.1016/j.adapen.2024.100164
-
Ghandehariun, S., Ghandehariun, A. M., & Ziabari, N. B. (2024). Complementary Assessment and Design Optimization of a Hybrid Renewable Energy System Integrated with Pumped Hydro Energy Storage with Natural Intake. Renewable Energy. https://doi.org/10.1016/j.renene.2024.120557
-
Ghige, O., & William, P. (2024). Empowering India’s Energy Future: Solar-Wind Hybrid Systems for Sustainable Development. 1–6. https://doi.org/10.1109/asiancon62057.2024.10837972
-
Gurumoorthi, G., Senthilkumar, S., Karthikeyan, G., & Alsaif, F. (2024). A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems. Dental Science Reports, 14(1). https://doi.org/10.1038/s41598-024-69483-4
-
Ha, H.-T., Truong, L. H. V., Hoang, T. V., & Vu, T. H. (2024). Application Of Combined Renewable Energy for Power Generation. 99–103. https://doi.org/10.1109/atigb63471.2024.10717812
-
Hidayat, B. S., Nahor, K. M. B., Hariyanto, N., & Pandi, P. (2024). Optimization of Hybrid Power Plant Planning Based on Solar, Wind, and Ocean-Wave Energy in Isolated Microgrid. 1–6. https://doi.org/10.1109/icpere63447.2024.10845358
-
Joshi, S. N., Aeidapu, M., & Ambati, B. (2024). Optimal Design of a Hybrid Renewable Energy System with PV, WT, and Hydrogen Energy Storage Using Improved Search Space Reduction Algorithm. 1–6. https://doi.org/10.1109/sefet61574.2024.10717953
-
Khaled, K. (2025). A Review on Designing Hybrid Energy Systems for Renewable Integration. 3(2), 21–32. https://doi.org/10.54216/mor.030203
-
Khalid, W., Awais, Q., Jamil, M., & Khan, A. A. (2024). Dynamic Simulation and Optimization of Off-Grid Hybrid Power Systems for Sustainable Rural Development. Electronics, 13(13), 2487. https://doi.org/10.3390/electronics13132487
-
Kumar GB, A., Balamurugan, M., Sunil Kumar, K. N., & Gatti, R. (2024). Design and control of a grid-connected solar-wind hybrid sustainable energy generation systems using DFIG. International Journal of Applied Power Engineering, 14(1), 188. https://doi.org/10.11591/ijape.v14.i1.pp188-201
-
Lujano-Rojas, J. M., Dufo-López, R., Artal-Sevil, J. S., & Garcia-Paricio, E. (2024). Design of Small-Scale Hybrid Energy Systems Taking into Account Generation and Demand Uncertainties. Renewable Energy. https://doi.org/10.1016/j.renene.2024.120540
-
ahmoudi, S. M., Maleki, A., & Rezaei Ochbelagh, D. (2025). Multi-objective optimization of hybrid energy systems using gravitational search algorithm. Dental Science Reports, 15(1). https://doi.org/10.1038/s41598-025-86476-z
-
Maggu, P., Singh, S., Sinha, A., Biamba, C., Iwendi, C., & Hashmi, A. (2024). Sustainable and optimized power solution using hybrid energy system. Energy Exploration & Exploitation. https://doi.org/10.1177/01445987241284689
-
Mathaba, T. N. D., & Abo‐Al‐Ez, K. M. (2024). Design of Hybrid Renewable Energy Systems: Integrating Multi‐Objective Optimization into a Multi‐Criteria Decision‐Making Framework. Engineering Reports. https://doi.org/10.1002/eng2.13074
-
Mouli, C. (2024). Design and development of hybrid power generation by solar and wind energy. Indian Scientific Journal of Research in Engineering and Management, 08(03), 1–5. https://doi.org/10.55041/ijsrem29722
-
Murugeswari, P., Selvaperumal, S., & Nagalakshmi, S. (2024). Design analysis of hybrid solar-wind renewable energy systems using water strider optimization. Physica Scripta. https://doi.org/10.1088/1402-4896/ad25af
-
Olodu, D. D., & Erameh, A. (2023). Waste to Energy: Review on the Development of Land Fill Gas for Power Generation in Sub-Saharan Africa. Black Sea Journal of Engineering and Science, 6(3), 296-307. https://doi.org/10.34248/bsengineering.1195247
-
Olodu, D. D., Ihenyen, O. I., & Inegbedion, F. (2025). Advances in renewable energy systems: Integrating solar, wind, and hydropower for a carbon-neutral future. International Journal of Novel Findings in Engineering, Science and Technology (IJONFEST), 3(1), 14–24. https://doi.org/10.61150/ijonfest.2025030102
-
Shklyarskiy, Y., Skvortsov, I. M., Sutikno, T., & Manap, M. (2024). The optimization technique for a hybrid renewable energy system based on solar-hydrogen generation. International Journal of Power Electronics and Drive Systems, 15(1), 639. https://doi.org/10.11591/ijpeds.v15.i1.pp639-650
-
Sibarani, M. B., Jufri, F. H., Samual, M. G., Widayat, A. A., & Sudiarto, B. (2024). A Design of Economically Feasible Hybrid Energy System with Renewable Energy Ratio Priority. International Journal of Electrical, Computer, Biomedical Engineering, 2(2). https://doi.org/10.62146/ijecbe.v2i2.60
-
Sifakis, N., Savvakis, N., Petropoulou, M., & Arampatzis, G. (2024). Techno-economic optimization of a novel industrial hybrid renewable energy system based on the waste-to-X principle. Energy Conversion and Management, 313, 118613. https://doi.org/10.1016/j.enconman.2024.118613
-
Tao, L., Wang, B., Su, Y., & Li, C. (2024). Novel Power System Design and Optimization Based on Renewable Energy Integration. Frontiers in Artificial Intelligence and Applications. https://doi.org/10.3233/faia241144
-
Vendoti, S., Muralidhar, M., Kiranmayi, R., Victoria, D., & Kishore, D. R. (2024). Design and Modeling of Hybrid Renewable Energy Systems for Optimized Power Generation (pp. 350–371). IGI Global. https://doi.org/10.4018/979-8-3693-3735-6.ch016
-
Yadegari, M. H., Sahebi, H., Razm, S., & Ashayeri, J. (2023). A sustainable multi-objective optimization model for the design of hybrid power supply networks under uncertainty. Renewable Energy, 219, 119443. https://doi.org/10.1016/j.renene.2023.119443
-
Zhou, Y., Chen, Z., Gong, Z., Chen, P., & Razmjooy, S. (2024). The improved aquila optimization approach for cost-effective design of hybrid renewable energy systems. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e27281