Research Article
BibTex RIS Cite
Year 2022, , 97 - 107, 31.08.2022
https://doi.org/10.30931/jetas.1030981

Abstract

References

  • [1] Göl E. Y., Karabudak E., "Mini-review: “Ball-Type Phthalocyanines”: similarities and differences from mono phthalocyanines", Mini Reviews in Organic Chemistry 16 (2019) : 410-421.
  • [2] Van Keulen K. E., Jansen M.E., Schrauwen R. W. M., Kolkman J. J., Siersema P.D., "Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer", Alimentary Pharmacology and Therapeutics 51(3) (2020) : 334-346.
  • [3] Tripathi K. M., Kim T. Y., Losic D., Thanh Tung T., "Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis", Carbon 110 (2016) : 97-129.
  • [4] Saalberg Y., Wolff M., "VOC breath biomarkers in lung cancer", Clinica Chimica Acta 459 (2016) : 5-9.
  • [5] Fend R., Bessant C., Williams A. J., Woodman A. C., "Monitoring haemodialysis using electronic nose and chemometrics", Biosensors and Bioelectronics 19 (2003) : 1581-1590.
  • [6] Singh Bhati V., Hojamberdiev M., Kumar M., "Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review", Energy Reports 6 (2020) : 46–62.
  • [7] Ridhi R., Saini G. S. S., Tripathi S. K., "Sensing of volatile organic compounds by copper phthalocyanine thin films", Materials Research Express 4 (2017) : 025102.
  • [8] Wanga B., Li Z., Zuoa X., Wu Y., Wang X., Chen Z., He C., Duan W., Gao J., "Preparation, characterization and NO2-sensing properties of octa-iso-pentyloxyphthalocyanine lead spin-coating films", Sensors and Actuators B 149 (2010) : 362–367.
  • [9] Altındal A., Kurt Ö., Şengül A., Bekaroğlu Ö., "Kinetics of CO2 adsorption on ball-type dicopper phthalocyaninethin film", Sensors and Actuators B 202 (2014) : 373–381.
  • [10] Ağırtaş M. S., Altındal A., Salih B., Saydam S., Bekaroğlu Ö., "Synthesis, characterization, and electrochemical and electrical properties of novel mono and ball-type metallophthalocyanines with four 9,9-bis(4-hydroxyphenyl)fluorine", Dalton Trans. 40 (2011) : 3315–3324.
  • [11] Yang R. D., Gredig T., Colesniuc C. N., Park J., Schuller I. K., Trogler W. C., Kummel A. C., "Ultrathin organic transistors for chemical sensing", Applied Physics Letters 90 (2007) : 263506.
  • [12] Yan J., Guo X., Duan S., Jia P., Wang L., Peng C., Zhang S., "Electronic nose feature extraction methods: A Review", Sensors 15 (2015) : 27804-27831.
  • [13] Li H., Luo D., Sun Y., GholamHosseini H., "Classification and identification of industrial gases based on electronic nose technology", Sensors 19 (2019) : 5033.
  • [14] Jia P., Tian F., He Q., Fan S., Liu J., Yang S. X., "Feature extraction of wound infection data for electronic nose based on a novel weighted KPCA", Sensors and Actuators B : Chemical 201 (2014) : 555–566.
  • [15] Kong C., Zhao S., Weng X., Liu C., Guan R., Chang Z., "Weighted Summation: Feature extraction of farm pigsty data for electronic nose", IEEE Access 7 (2019) : 96732–96742.
  • [16] Ngo K. A., Lauque P., Aguir K., "Identification of toxic gases using steady-state and transient responses of gas sensor array", Sensors and Materials 18 (2006) : 251-260.
  • [17] Abdurrahmanoğlu Ş., Altındal A., Bulut M., Bekaroğlu Ö., "Synthesis and electrical properties of novel supramolecular octa-phthalocyaninato-dicobalt(II)-hexazinc(II) and dicobalt(II)-dimeric-phthalocyanine with six ferrocenylimin pendant groups", Polyhedron 25 (2006) : 3639–3646.
  • [18] Llobet E., Brezmes J., Vilanova X., Sueiras J. E., Correig X., "Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array", Sensors and Actuators B: Chemical 41 (1–3) (1997) : 13–21.

Classification of VOC Vapors Using Machine Learning Algorithms

Year 2022, , 97 - 107, 31.08.2022
https://doi.org/10.30931/jetas.1030981

Abstract

Detection of volatile organic compound (VOC) vapors, which are known to have carcinogenic effects, is extremely important and necessary in many areas. In this work, the sensing properties of a cobalt phthalocyanine (CoPc) thin film at six different VOC vapors (methanol, ethanol, butanol, isopropyl alcohol, acetone, and ammonia) concentrations from 50 to 450 ppm are investigated. In this sense, it is observed that the interaction between the VOC vapors and the CoPc surface is not selective. It is shown that using machine learning algorithms the present sensor, which is poorly selective, can be transformed into a more efficient one with better detection ability. As a feature, 10 seconds of responses taken from the steady state region are used without any additional processing technique. Among classification algorithms, k-nearest neighbor (KNN) reaches the highest accuracy of 96.7%. This feature is also compared with the classical steady state response feature. Classification results indicate that the feature based on 10 seconds of responses taken from the steady state region is much better than that based on the classical steady state response feature.

References

  • [1] Göl E. Y., Karabudak E., "Mini-review: “Ball-Type Phthalocyanines”: similarities and differences from mono phthalocyanines", Mini Reviews in Organic Chemistry 16 (2019) : 410-421.
  • [2] Van Keulen K. E., Jansen M.E., Schrauwen R. W. M., Kolkman J. J., Siersema P.D., "Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer", Alimentary Pharmacology and Therapeutics 51(3) (2020) : 334-346.
  • [3] Tripathi K. M., Kim T. Y., Losic D., Thanh Tung T., "Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis", Carbon 110 (2016) : 97-129.
  • [4] Saalberg Y., Wolff M., "VOC breath biomarkers in lung cancer", Clinica Chimica Acta 459 (2016) : 5-9.
  • [5] Fend R., Bessant C., Williams A. J., Woodman A. C., "Monitoring haemodialysis using electronic nose and chemometrics", Biosensors and Bioelectronics 19 (2003) : 1581-1590.
  • [6] Singh Bhati V., Hojamberdiev M., Kumar M., "Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review", Energy Reports 6 (2020) : 46–62.
  • [7] Ridhi R., Saini G. S. S., Tripathi S. K., "Sensing of volatile organic compounds by copper phthalocyanine thin films", Materials Research Express 4 (2017) : 025102.
  • [8] Wanga B., Li Z., Zuoa X., Wu Y., Wang X., Chen Z., He C., Duan W., Gao J., "Preparation, characterization and NO2-sensing properties of octa-iso-pentyloxyphthalocyanine lead spin-coating films", Sensors and Actuators B 149 (2010) : 362–367.
  • [9] Altındal A., Kurt Ö., Şengül A., Bekaroğlu Ö., "Kinetics of CO2 adsorption on ball-type dicopper phthalocyaninethin film", Sensors and Actuators B 202 (2014) : 373–381.
  • [10] Ağırtaş M. S., Altındal A., Salih B., Saydam S., Bekaroğlu Ö., "Synthesis, characterization, and electrochemical and electrical properties of novel mono and ball-type metallophthalocyanines with four 9,9-bis(4-hydroxyphenyl)fluorine", Dalton Trans. 40 (2011) : 3315–3324.
  • [11] Yang R. D., Gredig T., Colesniuc C. N., Park J., Schuller I. K., Trogler W. C., Kummel A. C., "Ultrathin organic transistors for chemical sensing", Applied Physics Letters 90 (2007) : 263506.
  • [12] Yan J., Guo X., Duan S., Jia P., Wang L., Peng C., Zhang S., "Electronic nose feature extraction methods: A Review", Sensors 15 (2015) : 27804-27831.
  • [13] Li H., Luo D., Sun Y., GholamHosseini H., "Classification and identification of industrial gases based on electronic nose technology", Sensors 19 (2019) : 5033.
  • [14] Jia P., Tian F., He Q., Fan S., Liu J., Yang S. X., "Feature extraction of wound infection data for electronic nose based on a novel weighted KPCA", Sensors and Actuators B : Chemical 201 (2014) : 555–566.
  • [15] Kong C., Zhao S., Weng X., Liu C., Guan R., Chang Z., "Weighted Summation: Feature extraction of farm pigsty data for electronic nose", IEEE Access 7 (2019) : 96732–96742.
  • [16] Ngo K. A., Lauque P., Aguir K., "Identification of toxic gases using steady-state and transient responses of gas sensor array", Sensors and Materials 18 (2006) : 251-260.
  • [17] Abdurrahmanoğlu Ş., Altındal A., Bulut M., Bekaroğlu Ö., "Synthesis and electrical properties of novel supramolecular octa-phthalocyaninato-dicobalt(II)-hexazinc(II) and dicobalt(II)-dimeric-phthalocyanine with six ferrocenylimin pendant groups", Polyhedron 25 (2006) : 3639–3646.
  • [18] Llobet E., Brezmes J., Vilanova X., Sueiras J. E., Correig X., "Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array", Sensors and Actuators B: Chemical 41 (1–3) (1997) : 13–21.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences, Engineering
Journal Section Research Article
Authors

Serra Aksoy 0000-0002-6679-9498

Muttalip Özavsar 0000-0003-1471-6774

Ahmet Altındal 0000-0002-2185-4094

Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Aksoy, S., Özavsar, M., & Altındal, A. (2022). Classification of VOC Vapors Using Machine Learning Algorithms. Journal of Engineering Technology and Applied Sciences, 7(2), 97-107. https://doi.org/10.30931/jetas.1030981
AMA Aksoy S, Özavsar M, Altındal A. Classification of VOC Vapors Using Machine Learning Algorithms. JETAS. August 2022;7(2):97-107. doi:10.30931/jetas.1030981
Chicago Aksoy, Serra, Muttalip Özavsar, and Ahmet Altındal. “Classification of VOC Vapors Using Machine Learning Algorithms”. Journal of Engineering Technology and Applied Sciences 7, no. 2 (August 2022): 97-107. https://doi.org/10.30931/jetas.1030981.
EndNote Aksoy S, Özavsar M, Altındal A (August 1, 2022) Classification of VOC Vapors Using Machine Learning Algorithms. Journal of Engineering Technology and Applied Sciences 7 2 97–107.
IEEE S. Aksoy, M. Özavsar, and A. Altındal, “Classification of VOC Vapors Using Machine Learning Algorithms”, JETAS, vol. 7, no. 2, pp. 97–107, 2022, doi: 10.30931/jetas.1030981.
ISNAD Aksoy, Serra et al. “Classification of VOC Vapors Using Machine Learning Algorithms”. Journal of Engineering Technology and Applied Sciences 7/2 (August 2022), 97-107. https://doi.org/10.30931/jetas.1030981.
JAMA Aksoy S, Özavsar M, Altındal A. Classification of VOC Vapors Using Machine Learning Algorithms. JETAS. 2022;7:97–107.
MLA Aksoy, Serra et al. “Classification of VOC Vapors Using Machine Learning Algorithms”. Journal of Engineering Technology and Applied Sciences, vol. 7, no. 2, 2022, pp. 97-107, doi:10.30931/jetas.1030981.
Vancouver Aksoy S, Özavsar M, Altındal A. Classification of VOC Vapors Using Machine Learning Algorithms. JETAS. 2022;7(2):97-107.