Research Article
BibTex RIS Cite

On 1-Absorbing Fuzzy Ideals of Commutative Semirings

Year 2023, , 131 - 141, 31.12.2023
https://doi.org/10.30931/jetas.1302897

Abstract

In this study, the algebraic structure of 1-absorbing ideals is first examined and applied to fuzzy sets, along with an investigation into the relationships and algebraic properties between them. The contribution to this work's literature involves examining 1-absorbing fuzzy primary ideals. Features of 1-absorbing fuzzy primary ideals are explored, and it is demonstrated, for instance, that I is deemed a 1-absorbing fuzzy primary ideal of P if I is a fuzzy primary ideal of P. Additionally, I is considered a 2-absorbing fuzzy primary ideal of P if I is a 1-absorbing fuzzy primary ideal of P. Furthermore, these theorems are elucidated through specific examples.

Supporting Institution

Research Fund of the Yildiz Technical University

Project Number

FYL-2022-5038

References

  • [1] Atani, R. E., and Atani, S. E., “Ideal theory in commutative semirings”, Buletinul Academiei de Stiinte a Republicii Moldova Matematica 2 (2008) : 14-23.
  • [2] Zadeh, L.A., “Fuzzy sets”, Inform. and Control 8 (1965) : 338-353.
  • [3] Roberts, D. W., “Ordination based on fuzzy set theory”, Vegetation 66(3) (1986) : 123-131.
  • [4] Zimmermann, H. J., “Fuzzy set theory”, Wiley interdisciplinary reviews: Computational statistics 2(3) (2010) : 317-332.
  • [5] Chang, C. L., “Fuzzy topological spaces”, Journal of Mathematical Analysis and Applications 24(1) (1968) : 182-190.
  • [6] Rosenfeld, A., “Fuzzy groups”, Journal of Mathematical Analysis and applications 35(3) (1971) : 512-517.
  • [7] Liu, W. J., “Fuzzy invariant subgroups and fuzzy ideals”, Fuzzy sets and Systems 8(2) (1982) : 133-139.
  • [8] Abou-Zaid, S., “On fuzzy subnear-rings and ideals”, Fuzzy sets and systems 44(1) (1991) : 139-146.
  • [9] Atanassov, K. T., “Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets”, Physica, Heidelberg (1999) : 1-137.
  • [10] Szmidt, E., and Kacprzyk, J., “Distances between intuitionistic fuzzy sets”, Fuzzy sets and systems 114(3) (2000) : 505-518.
  • [11] Özdemir, O., & Kalınkara, Y., “Bulanık Mantık: 2000-2020 Yılları Arası Tez ve Makale Çalışmalarına Yönelik Bir İçerik Analizi”, Acta Infologica 4(2) (2020) : 155-174.
  • [12] Badawi, A., “On 2-absorbing ideals of commutative rings”, Bulletin of the Australian Mathematical Society 75(3) (2007) : 417-429.
  • [13] Badawi, A., & Celikel, E. Y., “On 1-absorbing primary ideals of commutative rings”, Journal of Algebra and Its Applications 19(06) (2020) : 2050111.
  • [14] Yassine, A., Nikmehr, M. J., & Nikandish, R., “On 1-absorbing prime ideals of commutative rings”, Journal of Algebra and its Applications 20(10) (2021): 2150175.
  • [15] Mandal, D., “On 2-absorbing fuzzy ideals of commutative semirings”, TWMS Journal of Applied and Engineering Mathematics 11(2) (2021) : 368.
  • [16] Darani, A.Y., Hashempoor, A., “L-fuzzy 0-(1-or 2-or 3-) 2-absorbing ideals in semiring”, Ann. Fuzzy Math. Inform. 7 (2014) : 303-311.
  • [17] Jonathan S. Golan, “Semirings and their applications”, Springer (2013) : 105-120.
  • [18] Darani, Ahmad Yousefian, “On 2-absorbing and weakly 2-absorbing ideals of commutative semirings”, Kyungpook Mathematical Journal 52 (1) (2012) : 91-97.
  • [19] Chaudhari, Jayprakash Ninu, “2-absorbing ideals in semirings”, International Journal of Al- gebra 6 (6) (2012) : 265-270.
  • [20] Groenewald, Nico, “On weakly 2-absorbing ideals of non-commutative rings”, Afrika Matematika 32(7-8) (2021) : 1669-1683.
  • [21] Soheilnia, Fatemeh, “On 2-absorbing and weakly 2-absorbing primary ideals of a commutative semiring”, Kyungpook Mathematical Journal 56 (1) (2016).
  • [22] Behzadipour, Hussein, and Peyman Nasehpour, “On 2-absorbing ideals of commutative semir- ings”, Journal of Algebra and Its Applications 19 (2)(2020) : 2050034.
  • [23] Jaber, Ameer., “Properties of weakly 2-absorbing primal ideals”, Italian Journal of Pure and Applied Mathematics 7 (2022) : 609-619.
  • [24] Groenewald, N. J., “On 2-absorbing and weakly 2-absorbing principally right primary ideals”, Journal of Algebra and Related Topics 9 (2) (2021) : 47-67.
  • [25] Sahoo, Taptee, Deepak Shetty, M., Groenewald, N. J., Harikrishnan, P. K., Kuncham, S. P., “On completely 2-absorbing ideals of N-groups”, Journal of Discrete Mathematical Sciences and Cryptography 24 (2) (2021) : 541-556.
  • [26] Yassine, A., M. J. Nikmehr, and R. Nikandish., “On 1-absorbing prime ideals of commutative rings”, Journal of Algebra and its Applications 20(10) (2021) : 2150175.
  • [27] Koc, Suat, Ünsal Tekir, and Eda Yıldız, “On weakly 1-absorbing prime ideals”, Ricerche di Matematica 72(2) (2023) : 723-738.
  • [28] Groenewald, Nico., “1-absorbing prime ideals and weakly 1-absorbing prime ideals in non-commutative rings”, S˜ao Paulo Journal of Mathematical Sciences (2022) : 1-17.
  • [29] Bouba, E. M., Tamekkante, M., Tekir, U¨ ., and Ko¸c, S., “Notes on 1-absorbing prime ideals”,Proceedings of the Bulgarian Academy of Sciences 75(5) (2022) : 631-639.
  • [30] Abu-Dawwas, R., Yıldız, E., Tekir, U¨ ., Koc, S., “On graded 1-absorbing prime ideals.” Sao Paulo Journal of Mathematical Sciences 15 (2021) : 450-462.
  • [31] Anbarloei, Mahdi., “On 1-absorbing prime hyperideal and some of its generalizations”, Journal of Mathematics (2022) : 4947019.
  • [32] Saleh, Mohammad, and Ibaa M., “On weakly 1-absorbing primary ideals of commutative semirings”, Communications in Advanced Mathematical Sciences 5(4) (2022) : 199-208.
Year 2023, , 131 - 141, 31.12.2023
https://doi.org/10.30931/jetas.1302897

Abstract

Project Number

FYL-2022-5038

References

  • [1] Atani, R. E., and Atani, S. E., “Ideal theory in commutative semirings”, Buletinul Academiei de Stiinte a Republicii Moldova Matematica 2 (2008) : 14-23.
  • [2] Zadeh, L.A., “Fuzzy sets”, Inform. and Control 8 (1965) : 338-353.
  • [3] Roberts, D. W., “Ordination based on fuzzy set theory”, Vegetation 66(3) (1986) : 123-131.
  • [4] Zimmermann, H. J., “Fuzzy set theory”, Wiley interdisciplinary reviews: Computational statistics 2(3) (2010) : 317-332.
  • [5] Chang, C. L., “Fuzzy topological spaces”, Journal of Mathematical Analysis and Applications 24(1) (1968) : 182-190.
  • [6] Rosenfeld, A., “Fuzzy groups”, Journal of Mathematical Analysis and applications 35(3) (1971) : 512-517.
  • [7] Liu, W. J., “Fuzzy invariant subgroups and fuzzy ideals”, Fuzzy sets and Systems 8(2) (1982) : 133-139.
  • [8] Abou-Zaid, S., “On fuzzy subnear-rings and ideals”, Fuzzy sets and systems 44(1) (1991) : 139-146.
  • [9] Atanassov, K. T., “Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets”, Physica, Heidelberg (1999) : 1-137.
  • [10] Szmidt, E., and Kacprzyk, J., “Distances between intuitionistic fuzzy sets”, Fuzzy sets and systems 114(3) (2000) : 505-518.
  • [11] Özdemir, O., & Kalınkara, Y., “Bulanık Mantık: 2000-2020 Yılları Arası Tez ve Makale Çalışmalarına Yönelik Bir İçerik Analizi”, Acta Infologica 4(2) (2020) : 155-174.
  • [12] Badawi, A., “On 2-absorbing ideals of commutative rings”, Bulletin of the Australian Mathematical Society 75(3) (2007) : 417-429.
  • [13] Badawi, A., & Celikel, E. Y., “On 1-absorbing primary ideals of commutative rings”, Journal of Algebra and Its Applications 19(06) (2020) : 2050111.
  • [14] Yassine, A., Nikmehr, M. J., & Nikandish, R., “On 1-absorbing prime ideals of commutative rings”, Journal of Algebra and its Applications 20(10) (2021): 2150175.
  • [15] Mandal, D., “On 2-absorbing fuzzy ideals of commutative semirings”, TWMS Journal of Applied and Engineering Mathematics 11(2) (2021) : 368.
  • [16] Darani, A.Y., Hashempoor, A., “L-fuzzy 0-(1-or 2-or 3-) 2-absorbing ideals in semiring”, Ann. Fuzzy Math. Inform. 7 (2014) : 303-311.
  • [17] Jonathan S. Golan, “Semirings and their applications”, Springer (2013) : 105-120.
  • [18] Darani, Ahmad Yousefian, “On 2-absorbing and weakly 2-absorbing ideals of commutative semirings”, Kyungpook Mathematical Journal 52 (1) (2012) : 91-97.
  • [19] Chaudhari, Jayprakash Ninu, “2-absorbing ideals in semirings”, International Journal of Al- gebra 6 (6) (2012) : 265-270.
  • [20] Groenewald, Nico, “On weakly 2-absorbing ideals of non-commutative rings”, Afrika Matematika 32(7-8) (2021) : 1669-1683.
  • [21] Soheilnia, Fatemeh, “On 2-absorbing and weakly 2-absorbing primary ideals of a commutative semiring”, Kyungpook Mathematical Journal 56 (1) (2016).
  • [22] Behzadipour, Hussein, and Peyman Nasehpour, “On 2-absorbing ideals of commutative semir- ings”, Journal of Algebra and Its Applications 19 (2)(2020) : 2050034.
  • [23] Jaber, Ameer., “Properties of weakly 2-absorbing primal ideals”, Italian Journal of Pure and Applied Mathematics 7 (2022) : 609-619.
  • [24] Groenewald, N. J., “On 2-absorbing and weakly 2-absorbing principally right primary ideals”, Journal of Algebra and Related Topics 9 (2) (2021) : 47-67.
  • [25] Sahoo, Taptee, Deepak Shetty, M., Groenewald, N. J., Harikrishnan, P. K., Kuncham, S. P., “On completely 2-absorbing ideals of N-groups”, Journal of Discrete Mathematical Sciences and Cryptography 24 (2) (2021) : 541-556.
  • [26] Yassine, A., M. J. Nikmehr, and R. Nikandish., “On 1-absorbing prime ideals of commutative rings”, Journal of Algebra and its Applications 20(10) (2021) : 2150175.
  • [27] Koc, Suat, Ünsal Tekir, and Eda Yıldız, “On weakly 1-absorbing prime ideals”, Ricerche di Matematica 72(2) (2023) : 723-738.
  • [28] Groenewald, Nico., “1-absorbing prime ideals and weakly 1-absorbing prime ideals in non-commutative rings”, S˜ao Paulo Journal of Mathematical Sciences (2022) : 1-17.
  • [29] Bouba, E. M., Tamekkante, M., Tekir, U¨ ., and Ko¸c, S., “Notes on 1-absorbing prime ideals”,Proceedings of the Bulgarian Academy of Sciences 75(5) (2022) : 631-639.
  • [30] Abu-Dawwas, R., Yıldız, E., Tekir, U¨ ., Koc, S., “On graded 1-absorbing prime ideals.” Sao Paulo Journal of Mathematical Sciences 15 (2021) : 450-462.
  • [31] Anbarloei, Mahdi., “On 1-absorbing prime hyperideal and some of its generalizations”, Journal of Mathematics (2022) : 4947019.
  • [32] Saleh, Mohammad, and Ibaa M., “On weakly 1-absorbing primary ideals of commutative semirings”, Communications in Advanced Mathematical Sciences 5(4) (2022) : 199-208.
There are 32 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Doç. Dr. Erdoğan Mehmet Özkan 0000-0003-2341-6626

Serkan Onar 0000-0003-3084-7694

Ayten Ozkan 0000-0002-3948-1943

İlayda Kaplan 0000-0002-6198-1573

Project Number FYL-2022-5038
Early Pub Date December 30, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Mehmet Özkan, D. D. E., Onar, S., Ozkan, A., Kaplan, İ. (2023). On 1-Absorbing Fuzzy Ideals of Commutative Semirings. Journal of Engineering Technology and Applied Sciences, 8(3), 131-141. https://doi.org/10.30931/jetas.1302897
AMA Mehmet Özkan DDE, Onar S, Ozkan A, Kaplan İ. On 1-Absorbing Fuzzy Ideals of Commutative Semirings. JETAS. December 2023;8(3):131-141. doi:10.30931/jetas.1302897
Chicago Mehmet Özkan, Doç. Dr. Erdoğan, Serkan Onar, Ayten Ozkan, and İlayda Kaplan. “On 1-Absorbing Fuzzy Ideals of Commutative Semirings”. Journal of Engineering Technology and Applied Sciences 8, no. 3 (December 2023): 131-41. https://doi.org/10.30931/jetas.1302897.
EndNote Mehmet Özkan DDE, Onar S, Ozkan A, Kaplan İ (December 1, 2023) On 1-Absorbing Fuzzy Ideals of Commutative Semirings. Journal of Engineering Technology and Applied Sciences 8 3 131–141.
IEEE D. D. E. Mehmet Özkan, S. Onar, A. Ozkan, and İ. Kaplan, “On 1-Absorbing Fuzzy Ideals of Commutative Semirings”, JETAS, vol. 8, no. 3, pp. 131–141, 2023, doi: 10.30931/jetas.1302897.
ISNAD Mehmet Özkan, Doç. Dr. Erdoğan et al. “On 1-Absorbing Fuzzy Ideals of Commutative Semirings”. Journal of Engineering Technology and Applied Sciences 8/3 (December 2023), 131-141. https://doi.org/10.30931/jetas.1302897.
JAMA Mehmet Özkan DDE, Onar S, Ozkan A, Kaplan İ. On 1-Absorbing Fuzzy Ideals of Commutative Semirings. JETAS. 2023;8:131–141.
MLA Mehmet Özkan, Doç. Dr. Erdoğan et al. “On 1-Absorbing Fuzzy Ideals of Commutative Semirings”. Journal of Engineering Technology and Applied Sciences, vol. 8, no. 3, 2023, pp. 131-4, doi:10.30931/jetas.1302897.
Vancouver Mehmet Özkan DDE, Onar S, Ozkan A, Kaplan İ. On 1-Absorbing Fuzzy Ideals of Commutative Semirings. JETAS. 2023;8(3):131-4.