Research Article
BibTex RIS Cite

Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation

Year 2018, Volume: 3 Issue: 3, 173 - 187, 29.12.2018
https://doi.org/10.30931/jetas.448622

Abstract

In this study, we present a numerical method to solve the Regularized Long Wave (RLW) equation,
based on cubic B-spline quasi-interpolation for the space integration and Crank-Nicolson method
for the time integration. The method is tested on the problems of propagation of a solitary wave
and interaction of two solitary waves. The three conservation quantities of the motion are calculated
to determine the conservation properties of the proposed algorithm.

References

  • [1] Peregrine, D.H., “Calculations of the development of an undular bore”, J. Fluid. Mech. 25 (2) (1966): 321–330.
  • [2] Benjamin, T.B., Bona, J.L., and Mahony, J.J., “Model equations for long waves in non-linear dispersive systems”, Philos. Trans. R. Soc., London A 272 (1972): 47–78.
  • [3] Eilbeck, J.C., and McGuire, G.R. “Numerical study of RLW equation” I: numerical methods”, J. Comput. Phys. 19 (1975) 43–57.
  • [4] Eilbeck, J.C. and McGuire, G. R., “Numerical study of the regularized long-wave equation II: interaction of solitary waves”, Journal of Computational Physics 23, (1977): 63-73.
  • [5] Padam, C.J. and Iskandar, L. “Numerical solutions of the regularized long wave equation”, Comp. Methods Appl. Mech. Eng. 20 (1979): 195–201.
  • [6] Irk, D., Dag, I. and Dogan, A., “Numerical integration of the RLW equation using cubic splines”, Anziam Journal 47, (2005):131-142.
  • [7] Raslan, K.R., “A computational method for the regularized long wave (RLW) equation”, Applied Mathematics and Computation 167(2), (2005b):1101–1118.
  • [8] Soliman, A. A. and Hussien, M. H., “Collocation solution for RLW equation with septic spline”, Applied Mathematics and Computation 161, (2005):623–636.
  • [9] Saka, B., Dag, I. and Irk, D., “Quintic B-spline collocation method for numerical solution of the RLW equation”, Anziam Journal 49, (2008b):389-410.
  • [10] Saka, B., Sahin, A. and Dag, I., “B-spline collocation algorithms for numerical solution of the RLW equation”, Wiley Subscription Services, Inc., A Wiley Company 27, 3, (2011):581-607.
  • [11] Irk, D., “Solitary wave solutions for the regularized long-wave equation”, Physics of Wave Phenomena 20, 3, (2012):174-183.
  • [12] Saka, B., and Dag, I. “A collocation method for the numerical solution of the RLW equation using cubic B-spline basis”, Arabian Journal for Science and Engineering. 30. 39-50, (2005).
  • [13] Esen, A. and Kutluay, S., “Application of a lumped Galerkin method to the regularized long wave equation”, Applied Mathematics and Computation 174, (2006):833–845.
  • [14] Alexander, M.E. and Morris, J.LL. “Galerkin methods applied to some model equations for nonlinear dispersive waves”, J. Comput. Phys. 30 (1979): 428–451.
  • [15] Gardner, L.R.T. and Gardner, G.A. “Solitary wave of the regularised long wave equation”, J. Comput. Phys. 91 (1990): 441–459.
  • [16] Gardner, L.R.T., Gardner, G.A. and Dag, I. “A B-spline finite element method for the regularized long wave equation”, Commun. Numer., Methods Eng. 11 (1995): 59–68.
  • [17] Gardner, L.R.T. and I. Dag, I. “The boundary-forced regularised long-wave equation”, Il Nuo. Cimen. 110B (12), (1995): 1487–1495.
  • [18] Gardner, L.R.T., Gardner, G.A. and Dogan, A. “A least squares finite element scheme for the RLW equation”, Commun. Numer., Methods Eng. 12 (1996): 795–804.
  • [19] Dag, I. and Ozer, M.N. “Approximation of RLW equation by least square cubic B-spline finite element method”, Appl. Math. Model. 25 (2001): 221–231.
  • [20] Dogan, A., “Numerical solution of regularized long wave equation using Petrov-Galerkin method”, Communications in Numerical Methods in Engineering 17, (2001):485–494.
  • [21] Dogan, A., “Numerical solution of RLW equation using linear finite elements within Galerkin’s method”, Applied Mathematical Modelling 26(7), (2002):771-783.
  • [22] Saka, B. and Dag, I., “A numerical solution of the RLW equation by Galerkin method using quartic B-splines”, Communications in Numerical Methods in Engineering 24, (2008):1339-1361.
  • [23] Dag, I., Korkmaz A. and Saka, B., “Cosine expansion-based differential quadrature algorithm for numerical solution of the RLW equation” 26, 3, (2010):544-560.
  • [24] Korkmaz, A. and Dag, I. “Numerical Simulations of Boundary-Forced RLW Equation with Cubic B-Spline-based Differential Quadrature Methods”, Arabian Journal for Science and Engineering, Volume 38, Issue 5, pp (2013):1151–1160.
  • [25] Mersin M.A. “B-spline Quasi-Interpolation Method for Numerical Solutions of some Partial Differential Equations”, M.S., Eskişehir Osmangazi University, (2014), 80p.
  • [26] Farin, G., “Curves and Surfaces for CAGD”, fifth ed., Morgan Kaufman, San Francisco, (2001).
  • [27] Sablonnière, P., “Quasi-interpolants splines sobre particiones uniforms, in: First Meeting in Approximation Theory of the University of Jaén, Ubeda” Prépublication IRMAR 00-38, Rennes, (June 29–July 2, 2000).
  • [28] Sablonnière, P., “Univariate spline quasi-interpolants and applications to numerical analysis”, Rend. Sem. Mat. Univ. Pol. Torino 63, (2005):211–222.
  • [29] Zhu, C. G. and Kang, W. S., “Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation”, Applied Mathematics and Computation 216, (2010):2679-2686.
  • [30] Rubin S. G. and Graves R. A., “A Cubic Spline Approximation for Problems in Fluid Mechanics,” Nasa TR R-436, Washington, DC, (1975).
  • [31] Olver, P.J. “Euler operators and conservation laws of the BBM equation”, Math. Proc. Camb. Philos. Soc. 85 (1979): 143–159.
Year 2018, Volume: 3 Issue: 3, 173 - 187, 29.12.2018
https://doi.org/10.30931/jetas.448622

Abstract

References

  • [1] Peregrine, D.H., “Calculations of the development of an undular bore”, J. Fluid. Mech. 25 (2) (1966): 321–330.
  • [2] Benjamin, T.B., Bona, J.L., and Mahony, J.J., “Model equations for long waves in non-linear dispersive systems”, Philos. Trans. R. Soc., London A 272 (1972): 47–78.
  • [3] Eilbeck, J.C., and McGuire, G.R. “Numerical study of RLW equation” I: numerical methods”, J. Comput. Phys. 19 (1975) 43–57.
  • [4] Eilbeck, J.C. and McGuire, G. R., “Numerical study of the regularized long-wave equation II: interaction of solitary waves”, Journal of Computational Physics 23, (1977): 63-73.
  • [5] Padam, C.J. and Iskandar, L. “Numerical solutions of the regularized long wave equation”, Comp. Methods Appl. Mech. Eng. 20 (1979): 195–201.
  • [6] Irk, D., Dag, I. and Dogan, A., “Numerical integration of the RLW equation using cubic splines”, Anziam Journal 47, (2005):131-142.
  • [7] Raslan, K.R., “A computational method for the regularized long wave (RLW) equation”, Applied Mathematics and Computation 167(2), (2005b):1101–1118.
  • [8] Soliman, A. A. and Hussien, M. H., “Collocation solution for RLW equation with septic spline”, Applied Mathematics and Computation 161, (2005):623–636.
  • [9] Saka, B., Dag, I. and Irk, D., “Quintic B-spline collocation method for numerical solution of the RLW equation”, Anziam Journal 49, (2008b):389-410.
  • [10] Saka, B., Sahin, A. and Dag, I., “B-spline collocation algorithms for numerical solution of the RLW equation”, Wiley Subscription Services, Inc., A Wiley Company 27, 3, (2011):581-607.
  • [11] Irk, D., “Solitary wave solutions for the regularized long-wave equation”, Physics of Wave Phenomena 20, 3, (2012):174-183.
  • [12] Saka, B., and Dag, I. “A collocation method for the numerical solution of the RLW equation using cubic B-spline basis”, Arabian Journal for Science and Engineering. 30. 39-50, (2005).
  • [13] Esen, A. and Kutluay, S., “Application of a lumped Galerkin method to the regularized long wave equation”, Applied Mathematics and Computation 174, (2006):833–845.
  • [14] Alexander, M.E. and Morris, J.LL. “Galerkin methods applied to some model equations for nonlinear dispersive waves”, J. Comput. Phys. 30 (1979): 428–451.
  • [15] Gardner, L.R.T. and Gardner, G.A. “Solitary wave of the regularised long wave equation”, J. Comput. Phys. 91 (1990): 441–459.
  • [16] Gardner, L.R.T., Gardner, G.A. and Dag, I. “A B-spline finite element method for the regularized long wave equation”, Commun. Numer., Methods Eng. 11 (1995): 59–68.
  • [17] Gardner, L.R.T. and I. Dag, I. “The boundary-forced regularised long-wave equation”, Il Nuo. Cimen. 110B (12), (1995): 1487–1495.
  • [18] Gardner, L.R.T., Gardner, G.A. and Dogan, A. “A least squares finite element scheme for the RLW equation”, Commun. Numer., Methods Eng. 12 (1996): 795–804.
  • [19] Dag, I. and Ozer, M.N. “Approximation of RLW equation by least square cubic B-spline finite element method”, Appl. Math. Model. 25 (2001): 221–231.
  • [20] Dogan, A., “Numerical solution of regularized long wave equation using Petrov-Galerkin method”, Communications in Numerical Methods in Engineering 17, (2001):485–494.
  • [21] Dogan, A., “Numerical solution of RLW equation using linear finite elements within Galerkin’s method”, Applied Mathematical Modelling 26(7), (2002):771-783.
  • [22] Saka, B. and Dag, I., “A numerical solution of the RLW equation by Galerkin method using quartic B-splines”, Communications in Numerical Methods in Engineering 24, (2008):1339-1361.
  • [23] Dag, I., Korkmaz A. and Saka, B., “Cosine expansion-based differential quadrature algorithm for numerical solution of the RLW equation” 26, 3, (2010):544-560.
  • [24] Korkmaz, A. and Dag, I. “Numerical Simulations of Boundary-Forced RLW Equation with Cubic B-Spline-based Differential Quadrature Methods”, Arabian Journal for Science and Engineering, Volume 38, Issue 5, pp (2013):1151–1160.
  • [25] Mersin M.A. “B-spline Quasi-Interpolation Method for Numerical Solutions of some Partial Differential Equations”, M.S., Eskişehir Osmangazi University, (2014), 80p.
  • [26] Farin, G., “Curves and Surfaces for CAGD”, fifth ed., Morgan Kaufman, San Francisco, (2001).
  • [27] Sablonnière, P., “Quasi-interpolants splines sobre particiones uniforms, in: First Meeting in Approximation Theory of the University of Jaén, Ubeda” Prépublication IRMAR 00-38, Rennes, (June 29–July 2, 2000).
  • [28] Sablonnière, P., “Univariate spline quasi-interpolants and applications to numerical analysis”, Rend. Sem. Mat. Univ. Pol. Torino 63, (2005):211–222.
  • [29] Zhu, C. G. and Kang, W. S., “Numerical solution of Burgers-Fisher equation by cubic B-spline quasi-interpolation”, Applied Mathematics and Computation 216, (2010):2679-2686.
  • [30] Rubin S. G. and Graves R. A., “A Cubic Spline Approximation for Problems in Fluid Mechanics,” Nasa TR R-436, Washington, DC, (1975).
  • [31] Olver, P.J. “Euler operators and conservation laws of the BBM equation”, Math. Proc. Camb. Philos. Soc. 85 (1979): 143–159.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Dursun Irk

Mehmet Ali Mersin

Publication Date December 29, 2018
Published in Issue Year 2018 Volume: 3 Issue: 3

Cite

APA Irk, D., & Mersin, M. A. (2018). Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation. Journal of Engineering Technology and Applied Sciences, 3(3), 173-187. https://doi.org/10.30931/jetas.448622
AMA Irk D, Mersin MA. Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation. JETAS. December 2018;3(3):173-187. doi:10.30931/jetas.448622
Chicago Irk, Dursun, and Mehmet Ali Mersin. “Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation”. Journal of Engineering Technology and Applied Sciences 3, no. 3 (December 2018): 173-87. https://doi.org/10.30931/jetas.448622.
EndNote Irk D, Mersin MA (December 1, 2018) Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation. Journal of Engineering Technology and Applied Sciences 3 3 173–187.
IEEE D. Irk and M. A. Mersin, “Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation”, JETAS, vol. 3, no. 3, pp. 173–187, 2018, doi: 10.30931/jetas.448622.
ISNAD Irk, Dursun - Mersin, Mehmet Ali. “Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation”. Journal of Engineering Technology and Applied Sciences 3/3 (December 2018), 173-187. https://doi.org/10.30931/jetas.448622.
JAMA Irk D, Mersin MA. Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation. JETAS. 2018;3:173–187.
MLA Irk, Dursun and Mehmet Ali Mersin. “Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation”. Journal of Engineering Technology and Applied Sciences, vol. 3, no. 3, 2018, pp. 173-87, doi:10.30931/jetas.448622.
Vancouver Irk D, Mersin MA. Cubic B-Spline Quasi-Interpolation Method For Regularized Long Wave Equation. JETAS. 2018;3(3):173-87.