Research Article
BibTex RIS Cite

Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$

Year 2022, Volume: 7 Issue: 1, 51 - 60, 30.04.2022
https://doi.org/10.30931/jetas.1057395

Abstract

In this paper, we investigate the algebraic structure of the non-local ring $\mathcal{R}_q = \mathbb{F}_q[v]/\langle v^{2}+1\rangle$ and identify the automorphisms of this ring to study the algebraic structure of the skew cyclic codes and their duals over it.

References

  • [1] Amarra, M. C. V., Nemenzo, F. R., "On $(1-u)$-cyclic codes over $\mathbb{F}_{p^{k}} +u\mathbb{F}_{p^{k}}$ ", Applied Mathematics Letters 21(11) (2008) : 1129-1133.
  • [2] Boucher, D., Geiselmann, W., Ulmer, F., "Skew-cyclic codes", Applicable Algebra in Engineering, Communication and Computing 18(4) (2007) : 379-389.
  • [3] Boucher, D., Solé, P., Ulmer, F., "Skew constacyclic codes over Galois rings", Advances in mathematics of communications 2(3) (2008) : 273.
  • [4] Boucher, D. and Ulmer, F., "Codes as modules over skew polynomial rings", In IMA International Conference on Cryptography and Coding (2009) : 38-55.
  • [5] Boucher, D. and Ulmer, F., "Coding with skew polynomial rings", Journal of Symbolic Computation 44(12) (2009) : 1644-1656.
  • [6] Boucher, D., Ulmer, F., "Self-dual skew codes and factorization of skew polynomials", Journal of Symbolic Computation 60 (2014) : 47-61.
  • [7] Bonnecaze, A., Udaya, P., "Cyclic codes and self-dual codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$", IEEE Transactions on Information Theory 45(4) (1999) : 1250-1255.
  • [8] Dinh, H. Q., López-Permouth, S. R., "Cyclic and negacyclic codes over finite chain rings", IEEE Transactions on Information Theory 50(8) (2004) : 1728-1744.
  • [9] Dinh, H. Q., "Constacyclic codes of length $p^{s}$ over $\mathbb{F}_{p^{m}} +u\mathbb{F}_{p^{m}}$", Journal of Algebra 324(5) (2010) : 940-950.
  • [10] Gao, J., Ma, F., Fu, F., "Skew constacyclic codes over the ring $\mathbb{F}_{q} +v\mathbb{F}_{q}$ ", Applied and Computational Mathematics 6(3) (2017) : 286-295.
  • [11] Gao, J., "Skew cyclic codes over $\mathbb{F}_{q} +v\mathbb{F}_{q}$", Journal of Applied Mathematics and Informatics 31(3-4) (2013) : 337-342.
  • [12] Gursoy, F., Siap, I., Yildiz, B., "Construction of skew cyclic codes over $\mathbb{F}_q+ v\mathbb{F}_q$", Advances in Mathematics of Communications 8(3) (2014) : 313-322.
  • [13] Jitman, S., Ling, S., Udomkavanich, P., "Skew constacyclic codes over finite chain rings", Advances in Mathematics of Communications 6(1) (2012) : 39-63.
  • [14] Martìnez-Moro, E., Rùa, I. F., "Multivariable codes over finite chain rings: serial codes", SIAM Journal on Discrete Mathematics 20(4) (2006) : 947-959.
  • [15] Shi, M., Yao, T., Solè, P., "Skew cyclic codes over a non-chain ring", Chin. J. Electron. 26(3) (2017) : 544-547.
  • [16] Norton, G. H., Sâlâgean, A., "Strong Gröbner bases and cyclic codes over a finite-chain ring", Electron. Notes Discrete Math. 6(2001) : 240-250.
  • [17] Siap, I., Abualrub, T., Aydin, N., Seneviratne, P., "Skew Cyclic codes of arbitrary length", Int. J. Information and Coding Theory 2(1) (2011) : 10-20.
Year 2022, Volume: 7 Issue: 1, 51 - 60, 30.04.2022
https://doi.org/10.30931/jetas.1057395

Abstract

References

  • [1] Amarra, M. C. V., Nemenzo, F. R., "On $(1-u)$-cyclic codes over $\mathbb{F}_{p^{k}} +u\mathbb{F}_{p^{k}}$ ", Applied Mathematics Letters 21(11) (2008) : 1129-1133.
  • [2] Boucher, D., Geiselmann, W., Ulmer, F., "Skew-cyclic codes", Applicable Algebra in Engineering, Communication and Computing 18(4) (2007) : 379-389.
  • [3] Boucher, D., Solé, P., Ulmer, F., "Skew constacyclic codes over Galois rings", Advances in mathematics of communications 2(3) (2008) : 273.
  • [4] Boucher, D. and Ulmer, F., "Codes as modules over skew polynomial rings", In IMA International Conference on Cryptography and Coding (2009) : 38-55.
  • [5] Boucher, D. and Ulmer, F., "Coding with skew polynomial rings", Journal of Symbolic Computation 44(12) (2009) : 1644-1656.
  • [6] Boucher, D., Ulmer, F., "Self-dual skew codes and factorization of skew polynomials", Journal of Symbolic Computation 60 (2014) : 47-61.
  • [7] Bonnecaze, A., Udaya, P., "Cyclic codes and self-dual codes over $\mathbb{F}_{2} +u\mathbb{F}_{2}$", IEEE Transactions on Information Theory 45(4) (1999) : 1250-1255.
  • [8] Dinh, H. Q., López-Permouth, S. R., "Cyclic and negacyclic codes over finite chain rings", IEEE Transactions on Information Theory 50(8) (2004) : 1728-1744.
  • [9] Dinh, H. Q., "Constacyclic codes of length $p^{s}$ over $\mathbb{F}_{p^{m}} +u\mathbb{F}_{p^{m}}$", Journal of Algebra 324(5) (2010) : 940-950.
  • [10] Gao, J., Ma, F., Fu, F., "Skew constacyclic codes over the ring $\mathbb{F}_{q} +v\mathbb{F}_{q}$ ", Applied and Computational Mathematics 6(3) (2017) : 286-295.
  • [11] Gao, J., "Skew cyclic codes over $\mathbb{F}_{q} +v\mathbb{F}_{q}$", Journal of Applied Mathematics and Informatics 31(3-4) (2013) : 337-342.
  • [12] Gursoy, F., Siap, I., Yildiz, B., "Construction of skew cyclic codes over $\mathbb{F}_q+ v\mathbb{F}_q$", Advances in Mathematics of Communications 8(3) (2014) : 313-322.
  • [13] Jitman, S., Ling, S., Udomkavanich, P., "Skew constacyclic codes over finite chain rings", Advances in Mathematics of Communications 6(1) (2012) : 39-63.
  • [14] Martìnez-Moro, E., Rùa, I. F., "Multivariable codes over finite chain rings: serial codes", SIAM Journal on Discrete Mathematics 20(4) (2006) : 947-959.
  • [15] Shi, M., Yao, T., Solè, P., "Skew cyclic codes over a non-chain ring", Chin. J. Electron. 26(3) (2017) : 544-547.
  • [16] Norton, G. H., Sâlâgean, A., "Strong Gröbner bases and cyclic codes over a finite-chain ring", Electron. Notes Discrete Math. 6(2001) : 240-250.
  • [17] Siap, I., Abualrub, T., Aydin, N., Seneviratne, P., "Skew Cyclic codes of arbitrary length", Int. J. Information and Coding Theory 2(1) (2011) : 10-20.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mehmet Emin Köroğlu 0000-0002-9173-4944

Early Pub Date March 21, 2022
Publication Date April 30, 2022
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Köroğlu, M. E. (2022). Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$. Journal of Engineering Technology and Applied Sciences, 7(1), 51-60. https://doi.org/10.30931/jetas.1057395
AMA Köroğlu ME. Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$. JETAS. April 2022;7(1):51-60. doi:10.30931/jetas.1057395
Chicago Köroğlu, Mehmet Emin. “Skew Cyclic Codes over the Non-Chain Ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$”. Journal of Engineering Technology and Applied Sciences 7, no. 1 (April 2022): 51-60. https://doi.org/10.30931/jetas.1057395.
EndNote Köroğlu ME (April 1, 2022) Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$. Journal of Engineering Technology and Applied Sciences 7 1 51–60.
IEEE M. E. Köroğlu, “Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$”, JETAS, vol. 7, no. 1, pp. 51–60, 2022, doi: 10.30931/jetas.1057395.
ISNAD Köroğlu, Mehmet Emin. “Skew Cyclic Codes over the Non-Chain Ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$”. Journal of Engineering Technology and Applied Sciences 7/1 (April 2022), 51-60. https://doi.org/10.30931/jetas.1057395.
JAMA Köroğlu ME. Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$. JETAS. 2022;7:51–60.
MLA Köroğlu, Mehmet Emin. “Skew Cyclic Codes over the Non-Chain Ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$”. Journal of Engineering Technology and Applied Sciences, vol. 7, no. 1, 2022, pp. 51-60, doi:10.30931/jetas.1057395.
Vancouver Köroğlu ME. Skew Cyclic Codes over the Non-Chain ring $\mathcal{R}_q=\mathbb{F}_q[v]/\langle v^{2}+1\rangle$. JETAS. 2022;7(1):51-60.