Review
BibTex RIS Cite

Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus

Year 2023, Volume: 2 Issue: 1, 65 - 77, 22.06.2023

Abstract

Tip 2 diyabetes mellitus'un dünya çapındaki prevalansı sürekli olarak artmakta ve halk sağlığı için önemli bir endişe haline gelmektedir. Genetik faktörlerin yanı sıra yaşam tarzı, yüksek enerji ve düşük lifli besinlerin tüketiminin artması ve bağırsak mikrobiyotası gibi birçok faktörün tip 2 diyabete yol açabileceği savunulmaktadır. Son zamanlarda yapılan bazı araştırmalar, bağırsak mikrobiyotasının bileşiminin tip 2 diyabeti tetikleyebileceğini öne sürmektedir. Bağırsak mikrobiyotasındaki değişiklikler bağırsak geçirgenliğinin bozulmasına ve proinflamatuar sitokinlerin salınmasına neden olarak insülin direncine katkıda bulunan metabolik düzenleme sistemleri üzerinde sinerjistik olarak hareket eden kısa zincirli yağ asitlerinin, safra asitlerinin ve diğer metabolitlerin metabolizmasını modüle edebilmektedir. Son yıllarda yapılan kısıtlı sayıdaki çalışmalarda bağırsakta homeostazı sağlayan müdahalelerin insülin sekresyon ve duyarlılığı üzerine yararlı etkilerinin olduğu ve glisemik kontrolü iyileştirdiği görülmektedir. İlerleyen yıllarda yapılacak olan çalışmalarda bağırsak mikrobiyotasının modüle ettiği spesifik yolakları tanımlamak ve tip 2 diyabetin yönetim stratejisinde yeni potansiyel hedeflerini belirlemek için olası patofizyolojik mekanizmalar klinik çalışmalarda daha ayrıntılı olarak incelenmelidir.

References

  • 1. World Health Organization (2016, 24 Mayıs) Global Reports on Diabetes. World Health Organization. WHO Press, Geneva. https://www.who.int/publications/i/item/9789241565257
  • 2. International Diabetes Federation (2017, 30 Nisan) Diabetes Atlas. Eighth Edition. https://diabetesatlas.org
  • 3. Lyssenko, V., Jonsson, A., Almgren, P., Pulizzi, N., Isomaa, B., Tuomi, T., Berglund, G., Altshuler, D., Nilsson, P., & Groop, L. (2008). Clinical risk factors, DNA variants, and the development of type 2 diabetes. TheNew England Journa of Medicine, 359, 2220–2232. https://doi.org/10.1056/ NEJMoa0801869
  • 4. Everard, A., & Cani, P.D. (2013). Diabetes, obesity and gut microbiota. Best practice & research Clinical Gastroenterology, 27(1), 73-83. https://doi.org/10.1016/j.bpg.2013.03.007.
  • 5. Kahn, S.E., Hull, R.L., & Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444, 840–846. https://doi.org/10.1038/nature05482.
  • 6. Zhang, L., Chu, J., Hao, W., Zhang, J., Li, H., Yang, C., & Wang, H. (2021). Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications. Mediators of Inflammation, 2021. https://doi.org/10.1155/2021/5110276.
  • 7. Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 113(12), 2019-2040. https://doi.org/10.1007/s10482-020-01474-7.
  • 8. Bielka, W., Przezak, A., & Pawlik, A. (2022). The role of the gut microbiota in the pathogenesis of diabetes. International Journal of Molecular Sciences, 23(1), 480. https://doi.org/10.3390/ijms23010480.
  • 9. Salgaço, M. K., Oliveira, L. G. S., Costa, G. N., Bianchi, F., & Sivieri, K. (2019). Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Applied Microbiology and Biotechnology, 103, 9229-9238. https://doi.org/10.1007/s002253-019-10156-y.
  • 10. Trøseid, M., Nestvold, T. K., Rudi, K., Thoresen, H., Nielsen, E. W., & Lappegård, K. T. (2013). Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care, 36(11), 3627-3632. https://doi.org/10.2337/dc13-0451.
  • 11. Sircana, A., Framarin, L., Leone, N., Berrutti, M., Castellino, F., Parente, R., & Musso, G. (2018). Altered gut microbiota in type 2 diabetes: just a coincidence?. Current Diabetes Reports, 18, 1-11. https://doi.org/10.1007/s11892-018-1057-6.
  • 12. Kuzu, F. (2017). Bağırsak mikrobiyotasının obezite, insülin direnci ve diyabetteki rolü. Journal of Biotechnology and Strategic Health Research, 1, 68-80. htthttps://dergipark.org.tr/en/pub/bshr/issue/32641/363323
  • 13. Cunningham, A. L., Stephens, J. W., & Harris, D. A. (2021). Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathogens, 13(1), 1-13. https://doi.org/10.1186/s13099-021-00446-0.
  • 14. Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., & Di Ciaula, A. (2022). Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International Journal of Molecular Sciences, 23(3), 1105. https://doi.org/10.3390/ijms23031105.
  • 15. Al Bander, Z., Nitert, M. D., Mousa, A., & Naderpoor, N. (2020). The gut microbiota and inflammation: an overview. International Journal of Environmental Research and Public Health, 17(20), 7618. https://doi.org/10.3390/ijerph17207618.
  • 16. Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76, 473-493. https://doi.org/10.1007/s00018-018-2943-4.
  • 17. Sircana, A., Framarin, L., & Leone, N. (2018). Altered gut microbiota in type 2 diabetes: just a coincidence?. Current Diabetes Report, 18(10), 98. https://doi.org/10.1007/s11892-018-1057-6.
  • 18. Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., & Krausz, K.W. (2018). Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology, 68(4), 1574-1588. https://doi.org/10.1002/hep.29857.
  • 19. Heianza, Y., Sun, D., Li, X., Di Donato, J.A., Bray, G.A., & Sacks, F.M. (2018). Gut microbiota metabolites, amino acid metabolites and improve- ments in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut, 68(2), 263-270. https://doi.org/10.1136/gutjnl-2018-316155.
  • 20. Scheithauer, T. P., Rampanelli, E., Nieuwdorp, M., Vallance, B. A., Verchere, C. B., Van Raalte, D. H., & Herrema, H. (2020). Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Frontiers in Immunology, 2546, 11, 571731. https://doi.org/10.3389/fimmu.2020.571731.
  • 21. Alexander, C., Swanson, K.S., Fahey, G.C., & Garleb, K.A. (2019). Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advance Nutrition, 10(4), 576–589. https://doi. org/10.1093/advances/nmz004
  • 22. Gao, Z. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509-1517. https://doi.org/10.2337/db08-1637.
  • 23. Lin, H.V., Frassetto, A., Kowalik, E.J., Nawrocki, A.R., Lu, M.M., Kosinski, J.R., Hubert, J.A., Szeto, D., Yao, X., & Forrest, G. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. Plos One, 7, e35240. https://doi.org/10.1371/journal.pone.0035240.
  • 24. Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., & Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517. https://doi.org/10. 2337/db08-1637
  • 25. Duncan, S.H., Belenguer, A., Holtrop, G., Johnstone, A.M., Flint, H.J. & Lobley, G.E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73, 1073-1078. https://doi.org/10.1128/AEM.02340-06.
  • 26. Larsen, N., Vogensen, F.K., Van Den Berg, F.W., Nielsen, D.S., Andreasen, A.S., & Pedersen, B.K. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos One, 5(2), e9085. https://doi.org/10.1371/journal. pone.0009085.
  • 27. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., & Zhang, F. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. https://doi.org/10.1038/nature11450 28. Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., & Fagerberg, B. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452), 99–103. https://doi.org/10.1038/nature12198.
  • 29. Yang, G., Wei, J., Liu, P., Zhang, Q., Tian, Y., Hou, G., & Jiang, X. (2021). Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism, 117, 154712. https://doi.org/10.1016/j.metabol.2021.154712.
  • 30. Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., & Ji, L. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. Plos One, 8(8), e71108. https://doi.org/10.1371/journal.pone.0071108.
  • 31. Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Krämer, M., & Bäckhed, F. (2020). The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metabolism, 32(3), 379-390. https://doi.org/10.1016/j.cmet.2020.06.011.
  • 32. Lambeth, S. M., Carson, T., Lowe, J., Ramaraj, T., Leff, J. W., Luo, L., & Shah, V. O. (2015). Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. Journal of Diabetes and Obesity, 2(3), 1-7. https://doi.org/10.15436/2376-0949.15.031.
  • 33. Zhao, L., Lou, H., Peng, Y., Chen, S., Zhang, Y., & Li, X. (2019). Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine, 66, 526-537. https://doi.org/10.1007/s12020-019-02103-8.
  • 34. Zhong, H., Ren, H., Lu, Y., Fang, C., Hou, G., Yang, Z., & Li, J. (2019). Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine, 47, 373-383. https://doi.org/10.1016/j.ebiom.2019.08.048.
  • 35. Gaike, A. H., Paul, D., Bhute, S., Dhotre, D. P., Pande, P., Upadhyaya, S., & Shouche, Y. S. (2020). The gut microbial diversity of newly diagnosed diabetics but not of prediabetics is significantly different from that of healthy nondiabetics. Msystems, 5(2), e00578-19. https://doi.org/10.1128/mSystems.00578-19.
  • 36. Zhang, Z., Tian, T., Chen, Z., Liu, L., Luo, T., & Dai, J. (2021). Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. PeerJ, 9, e10952. https://doi.org/10.7717/peerj.10952.
  • 37. Virieze, A.M., Druesne, A., Van Hylckama Vlieg, J.E., Bloks, V.W., Groen, A.K., Heilig, H.G., Zoetendal, E.G., Stroes, E.S., de Vos, W.M., Hoekstra, J.B., & Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensiti vity in individuals with metabolic syndrome. Gastroenterology, 143, 913-6.e7. https://doi.org/10.1053/j.gastro.2012.06.031.
  • 38. Hur, K.Y. (2017). Gut Microbiota and Metabolic Disorders. The Journal of Korean Diabetes, 18(2), 63-70. https://doi.org/10.4093/dmj.2015.39.3.198.
  • 39. Delzenne, N.M., Neyrinck, A.M., Backhed, F., & Cani, P.D. (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 7, 639-646. https://doi.org/10.1038/nrendo.2011.126.
  • 40. Simon, M.C., Strassburger, K., Nowotny, B., Kolb, H., Nowotny, P., & Burkart, V. Intake of lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care, 38(10), 1827–1834. https://doi.org/10. 2337/dc14-2690.
  • 41. Mobini, R., Tremaroli, V., Ståhlman, M., Karlsson, F., Levin, M., & Ljungberg, M. (2017). Metabolic effects of lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized con- trolled trial. Diabetes Obesity and Metabolism, 19(4), 579–589. https:// doi.org/10.1111/dom.12861.
  • 42. Ruan, Y., Sun, J., He, J., Chen, F., Chen, R., & Chen, H. (2015). Effect of probiotics on glycemic control: a systematic review and meta-analysis of randomized, controlled trials. Plos One, 10(7), e0132121. https://doi.org/10.1371/journal.pone.0132121.
  • 43. Li, C., Li, X., Han, H., Cui, H., Peng, M., & Wang, G. (2016). Effectof probiotics on metabolic profiles in type 2 diabetes mellitus: a meta-analysis of randomized, controlled trials. Medicine (Baltimore), 95(26), e4088. https://doi.org/10.1097/MD. 0000000000004088.
  • 44. Samah, S., Ramasamy, K., Lim, S.M., Neoh, C.F. (2016). Probiotics for the management of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Research and Clinical Practice, 118, 172–182. https:// doi.org/10.1016/j.diabres.2016.06.014.
  • 45. Akbari, V., & Hendijani, F. (2016). Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutrition Reviews, 74(12), 774–784. https://doi.org/10.1093/njtrit/nuw039.
  • 46. Yao, K., Zeng, L., He, Q., Wang, W., Lei, J., & Zou, X. (2017). Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. Medical Science Monitor, 23, 3044–3053. https://doi.org/10.12659/MSM.902600.
  • 47. David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., & Wolfe, B.E., (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820.
  • 48. Houghton, D., Hardy, T., Stewart, C., Errington, L., Day, C.P., & Trenell, M.I. (2018). Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 61(8), 1700-1711. https://doi.org/10.1007/s00125-018-4632-0.
  • 49. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., & Wang, X. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10. 1126/science.aao5774.
  • 50. Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., & Bohlooly, Y.M. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science, 341(6145), 569–573. https://doi.org/10.1126/science.1241165.
  • 51. Li, X., Watanabe, K., & Kimura, I. (2017). Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Frontiers in Immunology, 8, 1882. https://doi.org/10.3389/fimmu.2017.01882
  • 52. Hansen, C.H., Krych, L., Buschard, K., Metzdorff, S.B., Nellemann, C., & Hansen, L.H. (2014). A maternal gluten-free diet reduces inflammation and diabetes incidence inthe offspring of NOD mice. Diabetes, 63, 2821–2832. https://doi.org/10.2337/db13-1612.
  • 53. Pereira, M.A., Kartashov, A.I., Ebbeling, C.B., Van Horn, L., Slattery, M.L., & Jacobs, D.R. (2015). Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet, 365(9453), 36–42. https://doi.org/10.1016/S0140-6736(04)17663-0.
  • 54. Han, J.L., & Lin, H.L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World Journal of Gastroenterology: WJG, 20(47), 17737. https://doi.org/10.3748/wjg.v20.i47.17737.
  • 55. Birkeland, E., Gharagozlian, S., Birkeland, K.I., Valeur, J., Måge, I., Rud, I., &Aas, AM. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr. 2020 Oct;59(7):3325-3338. https://doi.org/10.1007/s00394-020-02282-5.
  • 56. Li, K., Zhang, L., Xue, J., Yang, X., Dong, X., & Sha, L. (2019). Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Function, 10(4), 1915–1927. https://doi.org/10.1039/C8FO02265H.
  • 57. Morshedi, M., Saghafi-Asl, M., & Hosseinifard, E.S. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing- Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal Translational Medicine, 18(1), 18. https://doi.org/10.1186/s12967-019-02169-y.
  • 58. Wang, Z., Li, W., Lyu, Z., Yang, L., Wang, S., Wang, P., Song, F., Chen, K., &Huang, Y. (2022). Effects of probiotic/prebiotic/synbiotic supplementation on blood glucose profiles: a systematic review and meta-analysis of randomized controlled trials. Public Health, 210, 149-159. https://doi.org/10.1016/j.puhe.2022.06.012.
  • 59. Nazzaro, F., Fratianni, F., Nicolaus, B., Poli, A., & Orlando, P. (2012). The prebiotic source influences the growth, biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe, 18(3), 280–285. https://doi.org/10.1016/j.anaerobe.2012.03.002.
  • 60. Mahboobi, S., Rahimi, F., & Jafarnejad, S. (2018). Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: a meta-analysis of randomized controlled trials. Advanced Pharmaceutical Bulletin, 8(4), 565–574. https://doi.org/10.15171/apb.2018.065.

Gut Microbiota and Type 2 Diabetes

Year 2023, Volume: 2 Issue: 1, 65 - 77, 22.06.2023

Abstract

Type 2 diabetes is an inflammatory metabolic disease characterized by insulin insufficiency/insufficient use of insulin in the body, the prevalence of which has been increasing (1,2). Environmental factors and genetic predisposition contribute to type 2 diabetes (3). Disruption of the gut microbiota is among the environmental factors contributing to type 2 diabetes (4,5). In this review, the relationship between gut microbiota and type 2 diabetes is summarized.
Gut microbiota includes microorganisms such as bacteria, archaea, fungi, and viruses that have settled in the gastrointestinal tract. Some functions of the gut microbiota, which has a symbiotic relationship with the human body, have various effects on human health. These functions are regulation of the immune system and inflammatory processes, ensuring intestinal integrity, regulation of neural signals, and increasing the levels of vitamins and intestinal metabolites (6).
Intestinal microbiota includes six bacterial phyla, mainly Firmicutes and Bacteroidetes. Factors such as genetics, mode of birth, breast milk intake, diet, lifestyle, and antibiotic use affect microbiota diversity (8). The intestinal barrier, which prevents the passage of toxins, intestinal bacteria, and bacterial metabolites into the circulation, is protected by intestinal permeability formed by the interconnection of intestinal epithelial cells (9). As a result of the disruption of the intestinal barrier, intestinal permeability increases which leads to translocation of intestinal bacteria into the circulation (6,10). Lipopolysaccharides (LPS) in the cell wall of Gram-negative bacteria increase intestinal permeability. Translocation of LPS into the circulation cause metabolic endotoxemia, leading to low-grade chronic inflammation. The resulting metabolic inflammation increases proinflammatory cytokines and impairs insulin metabolism. Intestinal microbiota is the main factor of the increase in intestinal permeability in type 2 diabetes (11). Therefore, healthy intestinal barrier functions may protect from metabolic diseases such as type 2 diabetes (12).

References

  • 1. World Health Organization (2016, 24 Mayıs) Global Reports on Diabetes. World Health Organization. WHO Press, Geneva. https://www.who.int/publications/i/item/9789241565257
  • 2. International Diabetes Federation (2017, 30 Nisan) Diabetes Atlas. Eighth Edition. https://diabetesatlas.org
  • 3. Lyssenko, V., Jonsson, A., Almgren, P., Pulizzi, N., Isomaa, B., Tuomi, T., Berglund, G., Altshuler, D., Nilsson, P., & Groop, L. (2008). Clinical risk factors, DNA variants, and the development of type 2 diabetes. TheNew England Journa of Medicine, 359, 2220–2232. https://doi.org/10.1056/ NEJMoa0801869
  • 4. Everard, A., & Cani, P.D. (2013). Diabetes, obesity and gut microbiota. Best practice & research Clinical Gastroenterology, 27(1), 73-83. https://doi.org/10.1016/j.bpg.2013.03.007.
  • 5. Kahn, S.E., Hull, R.L., & Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444, 840–846. https://doi.org/10.1038/nature05482.
  • 6. Zhang, L., Chu, J., Hao, W., Zhang, J., Li, H., Yang, C., & Wang, H. (2021). Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications. Mediators of Inflammation, 2021. https://doi.org/10.1155/2021/5110276.
  • 7. Gomaa, E. Z. (2020). Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 113(12), 2019-2040. https://doi.org/10.1007/s10482-020-01474-7.
  • 8. Bielka, W., Przezak, A., & Pawlik, A. (2022). The role of the gut microbiota in the pathogenesis of diabetes. International Journal of Molecular Sciences, 23(1), 480. https://doi.org/10.3390/ijms23010480.
  • 9. Salgaço, M. K., Oliveira, L. G. S., Costa, G. N., Bianchi, F., & Sivieri, K. (2019). Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Applied Microbiology and Biotechnology, 103, 9229-9238. https://doi.org/10.1007/s002253-019-10156-y.
  • 10. Trøseid, M., Nestvold, T. K., Rudi, K., Thoresen, H., Nielsen, E. W., & Lappegård, K. T. (2013). Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: evidence from bariatric surgery. Diabetes Care, 36(11), 3627-3632. https://doi.org/10.2337/dc13-0451.
  • 11. Sircana, A., Framarin, L., Leone, N., Berrutti, M., Castellino, F., Parente, R., & Musso, G. (2018). Altered gut microbiota in type 2 diabetes: just a coincidence?. Current Diabetes Reports, 18, 1-11. https://doi.org/10.1007/s11892-018-1057-6.
  • 12. Kuzu, F. (2017). Bağırsak mikrobiyotasının obezite, insülin direnci ve diyabetteki rolü. Journal of Biotechnology and Strategic Health Research, 1, 68-80. htthttps://dergipark.org.tr/en/pub/bshr/issue/32641/363323
  • 13. Cunningham, A. L., Stephens, J. W., & Harris, D. A. (2021). Gut microbiota influence in type 2 diabetes mellitus (T2DM). Gut Pathogens, 13(1), 1-13. https://doi.org/10.1186/s13099-021-00446-0.
  • 14. Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., & Di Ciaula, A. (2022). Gut microbiota and short chain fatty acids: implications in glucose homeostasis. International Journal of Molecular Sciences, 23(3), 1105. https://doi.org/10.3390/ijms23031105.
  • 15. Al Bander, Z., Nitert, M. D., Mousa, A., & Naderpoor, N. (2020). The gut microbiota and inflammation: an overview. International Journal of Environmental Research and Public Health, 17(20), 7618. https://doi.org/10.3390/ijerph17207618.
  • 16. Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76, 473-493. https://doi.org/10.1007/s00018-018-2943-4.
  • 17. Sircana, A., Framarin, L., & Leone, N. (2018). Altered gut microbiota in type 2 diabetes: just a coincidence?. Current Diabetes Report, 18(10), 98. https://doi.org/10.1007/s11892-018-1057-6.
  • 18. Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., & Krausz, K.W. (2018). Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology, 68(4), 1574-1588. https://doi.org/10.1002/hep.29857.
  • 19. Heianza, Y., Sun, D., Li, X., Di Donato, J.A., Bray, G.A., & Sacks, F.M. (2018). Gut microbiota metabolites, amino acid metabolites and improve- ments in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut, 68(2), 263-270. https://doi.org/10.1136/gutjnl-2018-316155.
  • 20. Scheithauer, T. P., Rampanelli, E., Nieuwdorp, M., Vallance, B. A., Verchere, C. B., Van Raalte, D. H., & Herrema, H. (2020). Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Frontiers in Immunology, 2546, 11, 571731. https://doi.org/10.3389/fimmu.2020.571731.
  • 21. Alexander, C., Swanson, K.S., Fahey, G.C., & Garleb, K.A. (2019). Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advance Nutrition, 10(4), 576–589. https://doi. org/10.1093/advances/nmz004
  • 22. Gao, Z. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509-1517. https://doi.org/10.2337/db08-1637.
  • 23. Lin, H.V., Frassetto, A., Kowalik, E.J., Nawrocki, A.R., Lu, M.M., Kosinski, J.R., Hubert, J.A., Szeto, D., Yao, X., & Forrest, G. (2012). Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. Plos One, 7, e35240. https://doi.org/10.1371/journal.pone.0035240.
  • 24. Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., & Ye, J. (2009). Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517. https://doi.org/10. 2337/db08-1637
  • 25. Duncan, S.H., Belenguer, A., Holtrop, G., Johnstone, A.M., Flint, H.J. & Lobley, G.E. (2007). Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology, 73, 1073-1078. https://doi.org/10.1128/AEM.02340-06.
  • 26. Larsen, N., Vogensen, F.K., Van Den Berg, F.W., Nielsen, D.S., Andreasen, A.S., & Pedersen, B.K. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos One, 5(2), e9085. https://doi.org/10.1371/journal. pone.0009085.
  • 27. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., & Zhang, F. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55–60. https://doi.org/10.1038/nature11450 28. Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., & Fagerberg, B. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452), 99–103. https://doi.org/10.1038/nature12198.
  • 29. Yang, G., Wei, J., Liu, P., Zhang, Q., Tian, Y., Hou, G., & Jiang, X. (2021). Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism, 117, 154712. https://doi.org/10.1016/j.metabol.2021.154712.
  • 30. Zhang, X., Shen, D., Fang, Z., Jie, Z., Qiu, X., Zhang, C., & Ji, L. (2013). Human gut microbiota changes reveal the progression of glucose intolerance. Plos One, 8(8), e71108. https://doi.org/10.1371/journal.pone.0071108.
  • 31. Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L. M., Krämer, M., & Bäckhed, F. (2020). The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metabolism, 32(3), 379-390. https://doi.org/10.1016/j.cmet.2020.06.011.
  • 32. Lambeth, S. M., Carson, T., Lowe, J., Ramaraj, T., Leff, J. W., Luo, L., & Shah, V. O. (2015). Composition, diversity and abundance of gut microbiome in prediabetes and type 2 diabetes. Journal of Diabetes and Obesity, 2(3), 1-7. https://doi.org/10.15436/2376-0949.15.031.
  • 33. Zhao, L., Lou, H., Peng, Y., Chen, S., Zhang, Y., & Li, X. (2019). Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine, 66, 526-537. https://doi.org/10.1007/s12020-019-02103-8.
  • 34. Zhong, H., Ren, H., Lu, Y., Fang, C., Hou, G., Yang, Z., & Li, J. (2019). Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine, 47, 373-383. https://doi.org/10.1016/j.ebiom.2019.08.048.
  • 35. Gaike, A. H., Paul, D., Bhute, S., Dhotre, D. P., Pande, P., Upadhyaya, S., & Shouche, Y. S. (2020). The gut microbial diversity of newly diagnosed diabetics but not of prediabetics is significantly different from that of healthy nondiabetics. Msystems, 5(2), e00578-19. https://doi.org/10.1128/mSystems.00578-19.
  • 36. Zhang, Z., Tian, T., Chen, Z., Liu, L., Luo, T., & Dai, J. (2021). Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. PeerJ, 9, e10952. https://doi.org/10.7717/peerj.10952.
  • 37. Virieze, A.M., Druesne, A., Van Hylckama Vlieg, J.E., Bloks, V.W., Groen, A.K., Heilig, H.G., Zoetendal, E.G., Stroes, E.S., de Vos, W.M., Hoekstra, J.B., & Nieuwdorp, M. (2012). Transfer of intestinal microbiota from lean donors increases insulin sensiti vity in individuals with metabolic syndrome. Gastroenterology, 143, 913-6.e7. https://doi.org/10.1053/j.gastro.2012.06.031.
  • 38. Hur, K.Y. (2017). Gut Microbiota and Metabolic Disorders. The Journal of Korean Diabetes, 18(2), 63-70. https://doi.org/10.4093/dmj.2015.39.3.198.
  • 39. Delzenne, N.M., Neyrinck, A.M., Backhed, F., & Cani, P.D. (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nature Reviews Endocrinology, 7, 639-646. https://doi.org/10.1038/nrendo.2011.126.
  • 40. Simon, M.C., Strassburger, K., Nowotny, B., Kolb, H., Nowotny, P., & Burkart, V. Intake of lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care, 38(10), 1827–1834. https://doi.org/10. 2337/dc14-2690.
  • 41. Mobini, R., Tremaroli, V., Ståhlman, M., Karlsson, F., Levin, M., & Ljungberg, M. (2017). Metabolic effects of lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized con- trolled trial. Diabetes Obesity and Metabolism, 19(4), 579–589. https:// doi.org/10.1111/dom.12861.
  • 42. Ruan, Y., Sun, J., He, J., Chen, F., Chen, R., & Chen, H. (2015). Effect of probiotics on glycemic control: a systematic review and meta-analysis of randomized, controlled trials. Plos One, 10(7), e0132121. https://doi.org/10.1371/journal.pone.0132121.
  • 43. Li, C., Li, X., Han, H., Cui, H., Peng, M., & Wang, G. (2016). Effectof probiotics on metabolic profiles in type 2 diabetes mellitus: a meta-analysis of randomized, controlled trials. Medicine (Baltimore), 95(26), e4088. https://doi.org/10.1097/MD. 0000000000004088.
  • 44. Samah, S., Ramasamy, K., Lim, S.M., Neoh, C.F. (2016). Probiotics for the management of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Research and Clinical Practice, 118, 172–182. https:// doi.org/10.1016/j.diabres.2016.06.014.
  • 45. Akbari, V., & Hendijani, F. (2016). Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutrition Reviews, 74(12), 774–784. https://doi.org/10.1093/njtrit/nuw039.
  • 46. Yao, K., Zeng, L., He, Q., Wang, W., Lei, J., & Zou, X. (2017). Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. Medical Science Monitor, 23, 3044–3053. https://doi.org/10.12659/MSM.902600.
  • 47. David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., & Wolfe, B.E., (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820.
  • 48. Houghton, D., Hardy, T., Stewart, C., Errington, L., Day, C.P., & Trenell, M.I. (2018). Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 61(8), 1700-1711. https://doi.org/10.1007/s00125-018-4632-0.
  • 49. Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y.Y., & Wang, X. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10. 1126/science.aao5774.
  • 50. Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., & Bohlooly, Y.M. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science, 341(6145), 569–573. https://doi.org/10.1126/science.1241165.
  • 51. Li, X., Watanabe, K., & Kimura, I. (2017). Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Frontiers in Immunology, 8, 1882. https://doi.org/10.3389/fimmu.2017.01882
  • 52. Hansen, C.H., Krych, L., Buschard, K., Metzdorff, S.B., Nellemann, C., & Hansen, L.H. (2014). A maternal gluten-free diet reduces inflammation and diabetes incidence inthe offspring of NOD mice. Diabetes, 63, 2821–2832. https://doi.org/10.2337/db13-1612.
  • 53. Pereira, M.A., Kartashov, A.I., Ebbeling, C.B., Van Horn, L., Slattery, M.L., & Jacobs, D.R. (2015). Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet, 365(9453), 36–42. https://doi.org/10.1016/S0140-6736(04)17663-0.
  • 54. Han, J.L., & Lin, H.L. (2014). Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World Journal of Gastroenterology: WJG, 20(47), 17737. https://doi.org/10.3748/wjg.v20.i47.17737.
  • 55. Birkeland, E., Gharagozlian, S., Birkeland, K.I., Valeur, J., Måge, I., Rud, I., &Aas, AM. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomised controlled trial. Eur J Nutr. 2020 Oct;59(7):3325-3338. https://doi.org/10.1007/s00394-020-02282-5.
  • 56. Li, K., Zhang, L., Xue, J., Yang, X., Dong, X., & Sha, L. (2019). Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/db mice. Food Function, 10(4), 1915–1927. https://doi.org/10.1039/C8FO02265H.
  • 57. Morshedi, M., Saghafi-Asl, M., & Hosseinifard, E.S. (2020). The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing- Lactobacillus plantarum on neuropsychological performance of diabetic rats. Journal Translational Medicine, 18(1), 18. https://doi.org/10.1186/s12967-019-02169-y.
  • 58. Wang, Z., Li, W., Lyu, Z., Yang, L., Wang, S., Wang, P., Song, F., Chen, K., &Huang, Y. (2022). Effects of probiotic/prebiotic/synbiotic supplementation on blood glucose profiles: a systematic review and meta-analysis of randomized controlled trials. Public Health, 210, 149-159. https://doi.org/10.1016/j.puhe.2022.06.012.
  • 59. Nazzaro, F., Fratianni, F., Nicolaus, B., Poli, A., & Orlando, P. (2012). The prebiotic source influences the growth, biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe, 18(3), 280–285. https://doi.org/10.1016/j.anaerobe.2012.03.002.
  • 60. Mahboobi, S., Rahimi, F., & Jafarnejad, S. (2018). Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: a meta-analysis of randomized controlled trials. Advanced Pharmaceutical Bulletin, 8(4), 565–574. https://doi.org/10.15171/apb.2018.065.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Nutrition and Dietetics
Journal Section Reviews
Authors

Gülseren Özsaç This is me 0009-0005-4358-1292

Özlem Özpak Akkuş 0000-0002-1471-8000

Publication Date June 22, 2023
Submission Date April 24, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

APA Özsaç, G., & Özpak Akkuş, Ö. (2023). Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus. Toros University Journal of Food Nutrition and Gastronomy, 2(1), 65-77.
AMA Özsaç G, Özpak Akkuş Ö. Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus. JFNG. June 2023;2(1):65-77.
Chicago Özsaç, Gülseren, and Özlem Özpak Akkuş. “Bağırsak Mikrobiyotası Ve Tip 2 Diyabetes Mellitus”. Toros University Journal of Food Nutrition and Gastronomy 2, no. 1 (June 2023): 65-77.
EndNote Özsaç G, Özpak Akkuş Ö (June 1, 2023) Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus. Toros University Journal of Food Nutrition and Gastronomy 2 1 65–77.
IEEE G. Özsaç and Ö. Özpak Akkuş, “Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus”, JFNG, vol. 2, no. 1, pp. 65–77, 2023.
ISNAD Özsaç, Gülseren - Özpak Akkuş, Özlem. “Bağırsak Mikrobiyotası Ve Tip 2 Diyabetes Mellitus”. Toros University Journal of Food Nutrition and Gastronomy 2/1 (June 2023), 65-77.
JAMA Özsaç G, Özpak Akkuş Ö. Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus. JFNG. 2023;2:65–77.
MLA Özsaç, Gülseren and Özlem Özpak Akkuş. “Bağırsak Mikrobiyotası Ve Tip 2 Diyabetes Mellitus”. Toros University Journal of Food Nutrition and Gastronomy, vol. 2, no. 1, 2023, pp. 65-77.
Vancouver Özsaç G, Özpak Akkuş Ö. Bağırsak Mikrobiyotası ve Tip 2 Diyabetes Mellitus. JFNG. 2023;2(1):65-77.