Research Article
BibTex RIS Cite

SUILLUS LUTEUS (L).ROUSSEL EKSTRESİ’NİN ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİ-PROLİFERATİF AKTİVİTESİ

Year 2020, , 373 - 387, 30.09.2020
https://doi.org/10.33483/jfpau.707014

Abstract

Amaç: Birçok ilaç keşfinde doğa, doğal ürünler benzeri bileşik sınıflarının tasarımına ilham kaynağı olarak kullanmıştır. Eski zamanlardan beri yenilebilir mantarlar hem gıda hem de ilaç olarak kullanılmıştır. Türkiye'de yaşayan insanlar Suillus luteus (L.) Roussel yabani yenilebilir mantarlarını yaygın olarak tüketmektedir. Bu çalışmada, çeşitli S.luteus ekstraktlarının antioksidan, antimikrobiyal ve anti-proliferatif aktiviteleri araştırıldı.
Gereç ve Yöntem: S.luteus'un antioksidan aktivitesi, DPHH serbest radikal süpürme yöntemi ve demir iyonu şelatlama kabiliyeti saptandı. Ek olarak, toplam fenoller, β-karoten ve likopen gibi antioksidan özelliklere sahip bileşenlerin konsantrasyonu spektrofotometrik yöntemlerle belirlenmiştir. Antimikrobiyal potansiyel, 14 mikroorganizma üzerinde agar difüzyon yöntemi ile gösterilmiştir. Son olarak, S. luteus metanol ekstresinin MCF-7 kanser hücre hatları üzerindeki sitotoksik etkisi MTT yöntemi kullanılarak değerlendirildi.
Sonuç ve Tartışma: Sonuçlar S.luteus metanolik ve etanolik özütlerin daha bol fenollere sahip olduğunu gösterdi. (sırasıyla 153, 49.33 mg GAE/g ekstre,) Ayrıca β-karoten ve likopen içeriği saptandı (0.120 ile 0.606 µg/mL arası) S. luteus’un metanol ve etanol özütlerinin, DPPH radikaline karşı antioksidan aktiviteleri aynı konsantrasyondaki standart antioksidanlar olan BHT’den daha yüksek aktivite göstermiştir (Metanol özütü (IC50: 63.72µg/mL) > Etanol özütü (IC50: 80.72 µg/mL) > BHT (IC50: 96.47µg/mL). Ek olarak, metanol ektresinin etanol ekstresine göre daha yüksek demir iyonu şelatlama kabiliyetine sahiptir (sırasıyla 2.72, 3.45 µg/mL). Genel olarak, test edilen mantar ekstreleri test edilen mikroorganizmalara karşı nispeten düşük antimikrobiyal aktiviteye sahiptir (9 ve 10mm zonçapı) Ayrıca, S. luteus’un metanol ekstresinin 1mg/mL konsantrasyonda kanser hücrelerinin tamamını öldürdüğü tespit edildi. Bu çalışmanın sonuçları incelendiğinde S.luteus'un özellikle metanol ekstresinin potansiyel medikal özelliklere sahip olduğu gösterilmiştir.

References

  • 1. Liu, Q., Jiang, J. (2012). Antioxidative activities of medicinal plants from TCM. Mini-Reviews in Medicinal Chemistry, 12(11), 1154-1172.
  • 2. Liu, Z., Jiao, Y.C., Lu, H., Shu, X., Chen, Q. (2020). Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydrate Polymers, 229, 115432.
  • 3. Racchi, M., Daglia, M., Lanni, C., Papetti, A., Govoni, S., Gazzani, G. (2002). Antiradical activity of water soluble components in common diet vegetables. J. Agric. Food. Chem, 50, 1272-1277.
  • 4. Becker, E.M., Nissen, L.R. and Skibsted, L.H. (2004). Antioxidant evaluation protocols: Food quality or health effects. European Food Research and Technology, 19, 561-571.
  • 5. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
  • 6. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z.(2005).Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules, 37(4), 195-199.
  • 7. Singh, N., Rajini, P.S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85(4), 611-616.
  • 8. Li, J.W., Vederas, J.C. (2009). Drug discovery and natural products: End of an era or an endless frontier. Science, 32, 161-165.
  • 9. Hoshi, H., Yagi, Y., Iijima, H., Matsunaga, K., Ishihara, Y., & Yasuhara, T. (2005). Isolation and characterization of a novel immunomodulatory r-glucan-protein complex from the mycelium of Tricholoma matsutake in Basidiomycetes. Journal of Agricultural and Food Chemistry, 53, 8948–8956.
  • 10. Feeney, M.J., Dwyer, J., Hasler-Lewis, C.M., Milner, J.A., Noakes, M., Rowe, S., … Wu, D. (2014). Mushrooms and Health Summit Proceedings. Journal of Food and Nutrition Research, 144(7), 1128-1136.
  • 11. Manninen, H., Rotola-Pukkila, M., Aisala, H., Hopia, A., Laaksonen, T. (2018). Free Amino Acids and 5′-Nucleotides in Finnish Forest Mushrooms. Food Chem, 247, 23-28.
  • 12. Roupas, P., Keogh, J., Noakes, M., Margetts, C., Taylor, P. (2012). The role of edible mushrooms in health: Evaluation of the evidence. J. Funct. Foods, 4, 687-709.
  • 13. Jayakumar, T., Thomas, P.A., Sheu, J.R. and Geraldine, P. (2011). In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Research International, 44, 851-861.
  • 14. Osaki, K., Suyama, S., Sakuno, E., Ushijima, S., Nagasawa, E., Maekawa, N., Ishihara, A. (2019). Antifungal activity of the volatile compound ısovelleral produced by ectomycorrhizal Russula fungi against plant-pathogenic fungi. J. Gen. Plant Pathol, 85, 428-435.
  • 15. Zivkovic, L., Bajic, V., Bruic, M., Borozan, S., Popic, K., Topalovic, D., Santibanez, J., Potparevic, B. (2019). Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 845, 403078.
  • 16. Song, X., Ren, Z., Wang, X., Jia, L., Zhang, C. (2020). Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. International Journal of Biological Macromolecules, 151, 1267-1276.
  • 17. Aytar, E., Özmen, A. (2020). Cytotoxic and apoptotic activities of Rhizopogon roseolus (Corda) Th. Fr. extracts. International Journal of Secondary Metabolite, 7(1), 54-62.
  • 18. Kim, S.H., Jakhar, R., Kang, S.C. (2015). Apoptotic properties of polysaccharide ısolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J. Biol. Sci., 22, 484-490.
  • 19. Opletal, L., Jahodar, L., Chobot, V., Zdansky, P., Lukes, J., Bratova, M., Solichova, D., Blunden, G., Dacke, C.G. and Patel, A.V. (1997) Evidence for the antihyperlipidemic activity of edible fungus Pleurotus ostreatu. Brit J Biomed Sci., 54,240-243.
  • 20. Vaz, J.A., Barros, L., Martins, A., Santos-Buelga, C., Vasconcelos, M., Ferreira, I.C. (2011). Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chemistry, 126, 610-616.
  • 21. Han, E.H., Hwang, Y.P., Kim, H.G., Choi, J.H., Im, J.H., Yang, J.H., Lee, H.U., Chun, S.S., Chung, Y.C., Jeong, H.G. (2011). Inhibitory effect of Pleurotus eryngii extracts on the activities of allergic mediators in antigen-stimulated mast cells. Food Chem. Toxicol, 27, 1199-1128.
  • 22. Nguyen, T.M., Le, H.G., Le, B.V., Kim, Y.H.K., Hwang, I. (2020). Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. International Immunopharmacology, 81, 106244.
  • 23. Choi, Y.J., Park, I.S., Kim, M.H., Choi, J.H.İ Im, J.H., Yang, J.H., Lee, H.K., Chun, S.S., Chung, Y.C., Jeong, H.G. (2018). The medicinal mushroom Auricularia auricula-judae (Bull.) extract has antioxidant activity and promotes procollagen biosynthesis in HaCaT cells. Nat Prod Res, 4,1-4.
  • 24. Donatini, B. (2011). Hericium erinaceus: properties mostly related to the secretion of neuronal growth factor. Phytothérapie, 9, 48-52.
  • 25. Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J.P.F.G. and Van Griensven, L.J.L.D. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus, Food Chemistry, 129, 1667-1675.
  • 26. Pan, Y., Dong, S., Hao, Y., Zhou, Y., Ren, X., Wang, J., Wang, W., Cheu, T. (2010). Ultrasonicassisted extraction process of crude polysaccharides from Yunzhi mushroom and its effect on hydroxyproline and glycosaminoglycan levels. Carbohydate Polymers, 81, 93-96.
  • 27. Zhang, B.Z., Yan, P.S., Chen, H. and He, J. (2012). Optimization of production conditions for mushroom polysaccharides with high yield and antitumor activity. Carbohydrate Polymers, 87, 2569-2575.
  • 28. Lu, R., Conrad, P., Yacine, H. (2012). Antitumor activity of mushroom polysaccharides. Food Function, 3, 1118–1130.
  • 29. Trajkovic, L.M.H., Mijatovic, S.A., Maksimov –İclvanic, D.D., Stojanovic, I.D., Momcilovic, M.B. (2009). Anticancer properties of Ganoderma lucidum methanol extracts in vitro and in vivo. Nutrition and Cancer, 61, 696–707.
  • 30. Chan, G.C., Chan, W.K. and Sze, D.M. (2009). The effects of β-glucan on human immune and cancer cells. Journal of Hematology Oncology, 2, 25.
  • 31. Kidd, P.M. (2000). The use of mushroom glucans and proteoglycans in cancer treatment. Alternative Medicine Review, 5, 4–27.
  • 32. Ouyang, F., Wang, G., Guo, W., Zhang, Y., Xiang, Y. and Zhao, M. (2013). AKT signalling and mitochondrial pathways are involved in mushroom polysaccharide-induced apoptosis and G1 or S phase arrest in human hepatoma cells. Food Chemistry, 138, 2130-2139.
  • 33. Ooi, V.E., Liu, F. (2000). Immunomodulation and anti-cancer activity of polysaccharidprotein complexes. Current Medicinal Chemistry, 7, 715–729.
  • 34. Akata, I., Altuntaş, D., Kabaktepe, Ş. (2019). Fungi determined ın Ankara University Tandoğan campus area (Ankara-Turkey). Trakya Unıversity Journal of Natural Sciences, 20 (1): 47-55.
  • 35. Akata, I., Doğan, H.H. (2015). Orbiliaceae for Turkish Ascomycota: Three new records. Bangladesh Journal of Botany, 44(1), 91-95.
  • 36. Sesli, E., Denchev, C.M. ( 2008). Checklists of the myxomycetes, larger ascomycetes, and larger basidiomycetes in Turkey. Mycotaxon, 106, 65– 67.
  • 37. Bulam, S., Ustun, N.Ş., Pekşen, A. (2018). Mushroom Foreign trade of Turkey in the last decade. Conference: International Congress on Engineering and Life Science (ICELIS) 26-29 April 2018 at Kastamonu Turkey. Proceeding Book 779-784.
  • 38. Bahadori, M.B., Sarikurkcu, C., Yalcin, O.U., Cengiz, M. and Gungor, H. (2019). Metal concentration, phenolics profiling, and antioxidant activity of two wild edible Melanoleuca mushrooms (M. cognata and M. stridula). Microchemical Journey, 150, 140172.
  • 39. Murata, H., Yamada, A., Yokota, S., Maruyama, T., Shimokawa, T., Neda, H. (2015). Innate traits of Pinaceae-specific ectomycorrhizal symbiont Suillus luteus that differentially associates with arbuscular mycorrhizal broad-leaved trees in vitro. Mycoscience, 56(6), 606-611.
  • 40. Kalogeropoulos, N., Mylona, A., Chiou, A., Ioannou, M.S., Andrikopoulos, N.K. (2007). Retention and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after shallow frying of vegetables in virgin olive oil LWT, 40(6),1008-1017.
  • 41. Siddhuraju, P., Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155.
  • 42. Nagata, M. and Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39, 925–928.
  • 43. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I. (2001). Antioxidant principles from bauhinia tarapotensis. Journal of Natural Products, 64(7), 892-895.
  • 44. Dinnis, T., Madeira, V., Almeida, L. (1994) Action of phenolic derivative (acetoaminophene salycilate and 5-amino solycilate as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers). Archives Biochemistry and Biophyics, 315, 161–169.
  • 45. Dabur, R.R., Sharma, G. L. (2002). Studies on antimycotic properties of Datura metel J. Ethnopharmacol, 80, 193-197.
  • 46. Abdelaaty, S., Abeer, I., Mansour, A.S. (2015). Antioxidant capacity and polyphenolic content of seven Saudi Arabian medicinal herbs traditionally used in Saudi Arabia. Indıan J Tradit Knowledge, 14(3), 28-35.
  • 47. Macakovaa, K., Opletala, L., Polasekb, M., Samkovac, V.,Jahodara, L. (2009). Free-radical scavenging activity of some European Boletales. Natural Product Communications, 2, 261-264.
  • 48. Reis, F.S., Heleno, S.A., Barros, L., Sousa, M.J., Martins, A.,Santos-Buelga,C., Ferreria, I.C.F.R. (2011). Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. Journal of Food Science, 76, 6.
  • 49. Keleş, A., Koca, İ.,Gençcelep, H. (2011). Antioxidant properties of wild edible. Journal Food Process Technology, 2, 130.
  • 50. Zeng, X., Suwandi, J., Fuller, J., Doronila, A., Ng, K. (2011). Antioxidant capacity and mineral contents of ediblewild Australian mushrooms. Food Science and Technology International, 18(4), 367–379.
  • 51. Jaworska, G., Pogon, K., Bernas, E., Gabor, A. (2014).Vitamins, phenolics and antioxidant activity of culinary prepared Suillus luteus (L.) Roussel mushroom. Food Science and Technology, 99, 701-706.
  • 52. Heleno, S.A., Barros, L., Sousa, M.J., Martins, A., Ferreira, I.C.F.R. (2010). Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 119,1443-1450.
  • 53. Miura, Y., Kondo, K., Saito, T., Shimada, H., Fraser, P. and Misawa, N. (1998). Production of the carotenoids lycopene, carotene, and astaxanhin in the food yeast candida utilis. Applied and Environmental Microbiology, 64, 1226–1229.
  • 54. Lindshield, B.L., Canene-Adams, K., Erdman Jr, J.W. (2007). Lycopenoids. Journal of Nutrition, 122(11), 2161-2166.
  • 55. Yaping, Z., Suping, Q., Wenli, Y., Zheng, X., Hong, S., Side, Y.,Da-pu,W. (2002). Antioxidant activity of lycopene extracted from tomato paste towards tri chloro methyl peroxyl radical CCl3O2. Food Chemistry, 77, 209-212.
  • 56. Barranco, P.G., Ocanas, L.G., Cabrera, L.V., Carmona, M.C.S., Ocanas, F.G., Gomez, X.S.R., Rangel,R.L. (2010). Evaluation of antioxidant, immunomodulating, cytotoxic and antimicrobial properties of different strains of Basidiomycetes from Northeastern Mexico. Journal of Medicinal Plants Research, 4(17), 1762-1769.
  • 57. Duman, R., Doğan, H.H., Ateş, A. (2003).Morchella conica (Pers.) Boudier and Suillus luteus (L.) S. F. Gray Makrofunguslarının Antimikrobiyal Aktiviteleri. Selçuk Üniversitesi Fen Edebiyat Dergisi, 22, 19-24.
  • 58. Santos, T., Tavares, C., Sousa, D., Vaz, J.A., Calhelha, R.C., Martins, A., Ferreira, I.C.F.R.,Vasconcelos, H.M. (2013). Suillus luteus methanolic extract inhibits cell growth and proliferation of a colon cancer cell line. Food Research Intertational, 53, 476-481.
  • 59. Vaz, J.A., Ferreira, I.C., Tavares, C., Almedia, G.M., Martins, A., Vesconcelos, M. (2012). Suillus collinitus methanolic extract ıncreases P53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chem, 135, 596–602.
  • 60. Lage, H. (2008).An overview of cancer multidrug resistance: a stil unsolved problem. Cellular and Molecular Life Sciences, 65, 3145-3167.

ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS

Year 2020, , 373 - 387, 30.09.2020
https://doi.org/10.33483/jfpau.707014

Abstract

Objective: Many drug discovery have used nature as an inspiration for the design of naturel products like compound classes. From ancient times edible mushrooms have been used both as food and medicine. People living in Turkey widely consume Suillus luteus (L.) Roussel wild edible mushrooms In this study, we were investigated antioxidant, antimicrobial and cytotoxic activities of various extracts of S.luteus.
Material and Method: Antioxidant activity of S.luteus was detected method by DPHH free radical scavenging and ferrous ion chelating ability. In addition, the concent of the components with antioxidant properties, such as total phenols,β-caratone and lycopene were determined by spectrophotometric methods. The antimicrobial potential was demonstrated with a agar well diffusion method on 14 microorganisms. Fınally, the cytotoxic effect of methanolic extract of S. luteus on MCF-7 cancer cell lines were evaluated by using MTT method.
Result and Discussion: The results indicated that S.luteus methanolic and ethanolic extracts have more abundant phenols (153, 49.33 mg GAE/g extract, respectively).In addıtıon β-caratone and lycopene content detected. (from 0.120 to 0.606µg/mL).S.luteus extracts had more potent free radical scavenging activity than standard antioxidants BHT. (Methanol extract (IC50: 63.72µg/mL) > Ethanol extract (IC50: 80.72 µg/mL) > BHT (IC50: 96.47µg/mL). In addition, methanol extracts possessed higher ferrous ion chelating ability than ethanol extracts(2.72, 3.45 µg/mL, respectively) .Generally, the tested mushroom extracts had relatively low antimicrobial activity against the tested microorganisms (9 and 10 mm zone diameter). Also, S.luteus methanolic extract was found to kill all cancer cells at a concentration of 1mg/mL. These results showed that S.luteus, especially methanol extracts, have potential medical.

References

  • 1. Liu, Q., Jiang, J. (2012). Antioxidative activities of medicinal plants from TCM. Mini-Reviews in Medicinal Chemistry, 12(11), 1154-1172.
  • 2. Liu, Z., Jiao, Y.C., Lu, H., Shu, X., Chen, Q. (2020). Chemical characterization, antioxidant properties and anticancer activity of exopolysaccharides from Floccularia luteovirens. Carbohydrate Polymers, 229, 115432.
  • 3. Racchi, M., Daglia, M., Lanni, C., Papetti, A., Govoni, S., Gazzani, G. (2002). Antiradical activity of water soluble components in common diet vegetables. J. Agric. Food. Chem, 50, 1272-1277.
  • 4. Becker, E.M., Nissen, L.R. and Skibsted, L.H. (2004). Antioxidant evaluation protocols: Food quality or health effects. European Food Research and Technology, 19, 561-571.
  • 5. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44-84.
  • 6. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z.(2005).Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. International Journal of Biological Macromolecules, 37(4), 195-199.
  • 7. Singh, N., Rajini, P.S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85(4), 611-616.
  • 8. Li, J.W., Vederas, J.C. (2009). Drug discovery and natural products: End of an era or an endless frontier. Science, 32, 161-165.
  • 9. Hoshi, H., Yagi, Y., Iijima, H., Matsunaga, K., Ishihara, Y., & Yasuhara, T. (2005). Isolation and characterization of a novel immunomodulatory r-glucan-protein complex from the mycelium of Tricholoma matsutake in Basidiomycetes. Journal of Agricultural and Food Chemistry, 53, 8948–8956.
  • 10. Feeney, M.J., Dwyer, J., Hasler-Lewis, C.M., Milner, J.A., Noakes, M., Rowe, S., … Wu, D. (2014). Mushrooms and Health Summit Proceedings. Journal of Food and Nutrition Research, 144(7), 1128-1136.
  • 11. Manninen, H., Rotola-Pukkila, M., Aisala, H., Hopia, A., Laaksonen, T. (2018). Free Amino Acids and 5′-Nucleotides in Finnish Forest Mushrooms. Food Chem, 247, 23-28.
  • 12. Roupas, P., Keogh, J., Noakes, M., Margetts, C., Taylor, P. (2012). The role of edible mushrooms in health: Evaluation of the evidence. J. Funct. Foods, 4, 687-709.
  • 13. Jayakumar, T., Thomas, P.A., Sheu, J.R. and Geraldine, P. (2011). In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Research International, 44, 851-861.
  • 14. Osaki, K., Suyama, S., Sakuno, E., Ushijima, S., Nagasawa, E., Maekawa, N., Ishihara, A. (2019). Antifungal activity of the volatile compound ısovelleral produced by ectomycorrhizal Russula fungi against plant-pathogenic fungi. J. Gen. Plant Pathol, 85, 428-435.
  • 15. Zivkovic, L., Bajic, V., Bruic, M., Borozan, S., Popic, K., Topalovic, D., Santibanez, J., Potparevic, B. (2019). Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 845, 403078.
  • 16. Song, X., Ren, Z., Wang, X., Jia, L., Zhang, C. (2020). Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. International Journal of Biological Macromolecules, 151, 1267-1276.
  • 17. Aytar, E., Özmen, A. (2020). Cytotoxic and apoptotic activities of Rhizopogon roseolus (Corda) Th. Fr. extracts. International Journal of Secondary Metabolite, 7(1), 54-62.
  • 18. Kim, S.H., Jakhar, R., Kang, S.C. (2015). Apoptotic properties of polysaccharide ısolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J. Biol. Sci., 22, 484-490.
  • 19. Opletal, L., Jahodar, L., Chobot, V., Zdansky, P., Lukes, J., Bratova, M., Solichova, D., Blunden, G., Dacke, C.G. and Patel, A.V. (1997) Evidence for the antihyperlipidemic activity of edible fungus Pleurotus ostreatu. Brit J Biomed Sci., 54,240-243.
  • 20. Vaz, J.A., Barros, L., Martins, A., Santos-Buelga, C., Vasconcelos, M., Ferreira, I.C. (2011). Chemical composition of wild edible mushrooms and antioxidant properties of their water soluble polysaccharidic and ethanolic fractions. Food Chemistry, 126, 610-616.
  • 21. Han, E.H., Hwang, Y.P., Kim, H.G., Choi, J.H., Im, J.H., Yang, J.H., Lee, H.U., Chun, S.S., Chung, Y.C., Jeong, H.G. (2011). Inhibitory effect of Pleurotus eryngii extracts on the activities of allergic mediators in antigen-stimulated mast cells. Food Chem. Toxicol, 27, 1199-1128.
  • 22. Nguyen, T.M., Le, H.G., Le, B.V., Kim, Y.H.K., Hwang, I. (2020). Anti-allergic effect of inotodiol, a lanostane triterpenoid from Chaga mushroom, via selective inhibition of mast cell function. International Immunopharmacology, 81, 106244.
  • 23. Choi, Y.J., Park, I.S., Kim, M.H., Choi, J.H.İ Im, J.H., Yang, J.H., Lee, H.K., Chun, S.S., Chung, Y.C., Jeong, H.G. (2018). The medicinal mushroom Auricularia auricula-judae (Bull.) extract has antioxidant activity and promotes procollagen biosynthesis in HaCaT cells. Nat Prod Res, 4,1-4.
  • 24. Donatini, B. (2011). Hericium erinaceus: properties mostly related to the secretion of neuronal growth factor. Phytothérapie, 9, 48-52.
  • 25. Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J.P.F.G. and Van Griensven, L.J.L.D. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus, Food Chemistry, 129, 1667-1675.
  • 26. Pan, Y., Dong, S., Hao, Y., Zhou, Y., Ren, X., Wang, J., Wang, W., Cheu, T. (2010). Ultrasonicassisted extraction process of crude polysaccharides from Yunzhi mushroom and its effect on hydroxyproline and glycosaminoglycan levels. Carbohydate Polymers, 81, 93-96.
  • 27. Zhang, B.Z., Yan, P.S., Chen, H. and He, J. (2012). Optimization of production conditions for mushroom polysaccharides with high yield and antitumor activity. Carbohydrate Polymers, 87, 2569-2575.
  • 28. Lu, R., Conrad, P., Yacine, H. (2012). Antitumor activity of mushroom polysaccharides. Food Function, 3, 1118–1130.
  • 29. Trajkovic, L.M.H., Mijatovic, S.A., Maksimov –İclvanic, D.D., Stojanovic, I.D., Momcilovic, M.B. (2009). Anticancer properties of Ganoderma lucidum methanol extracts in vitro and in vivo. Nutrition and Cancer, 61, 696–707.
  • 30. Chan, G.C., Chan, W.K. and Sze, D.M. (2009). The effects of β-glucan on human immune and cancer cells. Journal of Hematology Oncology, 2, 25.
  • 31. Kidd, P.M. (2000). The use of mushroom glucans and proteoglycans in cancer treatment. Alternative Medicine Review, 5, 4–27.
  • 32. Ouyang, F., Wang, G., Guo, W., Zhang, Y., Xiang, Y. and Zhao, M. (2013). AKT signalling and mitochondrial pathways are involved in mushroom polysaccharide-induced apoptosis and G1 or S phase arrest in human hepatoma cells. Food Chemistry, 138, 2130-2139.
  • 33. Ooi, V.E., Liu, F. (2000). Immunomodulation and anti-cancer activity of polysaccharidprotein complexes. Current Medicinal Chemistry, 7, 715–729.
  • 34. Akata, I., Altuntaş, D., Kabaktepe, Ş. (2019). Fungi determined ın Ankara University Tandoğan campus area (Ankara-Turkey). Trakya Unıversity Journal of Natural Sciences, 20 (1): 47-55.
  • 35. Akata, I., Doğan, H.H. (2015). Orbiliaceae for Turkish Ascomycota: Three new records. Bangladesh Journal of Botany, 44(1), 91-95.
  • 36. Sesli, E., Denchev, C.M. ( 2008). Checklists of the myxomycetes, larger ascomycetes, and larger basidiomycetes in Turkey. Mycotaxon, 106, 65– 67.
  • 37. Bulam, S., Ustun, N.Ş., Pekşen, A. (2018). Mushroom Foreign trade of Turkey in the last decade. Conference: International Congress on Engineering and Life Science (ICELIS) 26-29 April 2018 at Kastamonu Turkey. Proceeding Book 779-784.
  • 38. Bahadori, M.B., Sarikurkcu, C., Yalcin, O.U., Cengiz, M. and Gungor, H. (2019). Metal concentration, phenolics profiling, and antioxidant activity of two wild edible Melanoleuca mushrooms (M. cognata and M. stridula). Microchemical Journey, 150, 140172.
  • 39. Murata, H., Yamada, A., Yokota, S., Maruyama, T., Shimokawa, T., Neda, H. (2015). Innate traits of Pinaceae-specific ectomycorrhizal symbiont Suillus luteus that differentially associates with arbuscular mycorrhizal broad-leaved trees in vitro. Mycoscience, 56(6), 606-611.
  • 40. Kalogeropoulos, N., Mylona, A., Chiou, A., Ioannou, M.S., Andrikopoulos, N.K. (2007). Retention and distribution of natural antioxidants (α-tocopherol, polyphenols and terpenic acids) after shallow frying of vegetables in virgin olive oil LWT, 40(6),1008-1017.
  • 41. Siddhuraju, P., Becker, K. (2003). Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of Agricultural and Food Chemistry, 51(8), 2144–2155.
  • 42. Nagata, M. and Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39, 925–928.
  • 43. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., Morelli, I. (2001). Antioxidant principles from bauhinia tarapotensis. Journal of Natural Products, 64(7), 892-895.
  • 44. Dinnis, T., Madeira, V., Almeida, L. (1994) Action of phenolic derivative (acetoaminophene salycilate and 5-amino solycilate as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers). Archives Biochemistry and Biophyics, 315, 161–169.
  • 45. Dabur, R.R., Sharma, G. L. (2002). Studies on antimycotic properties of Datura metel J. Ethnopharmacol, 80, 193-197.
  • 46. Abdelaaty, S., Abeer, I., Mansour, A.S. (2015). Antioxidant capacity and polyphenolic content of seven Saudi Arabian medicinal herbs traditionally used in Saudi Arabia. Indıan J Tradit Knowledge, 14(3), 28-35.
  • 47. Macakovaa, K., Opletala, L., Polasekb, M., Samkovac, V.,Jahodara, L. (2009). Free-radical scavenging activity of some European Boletales. Natural Product Communications, 2, 261-264.
  • 48. Reis, F.S., Heleno, S.A., Barros, L., Sousa, M.J., Martins, A.,Santos-Buelga,C., Ferreria, I.C.F.R. (2011). Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. Journal of Food Science, 76, 6.
  • 49. Keleş, A., Koca, İ.,Gençcelep, H. (2011). Antioxidant properties of wild edible. Journal Food Process Technology, 2, 130.
  • 50. Zeng, X., Suwandi, J., Fuller, J., Doronila, A., Ng, K. (2011). Antioxidant capacity and mineral contents of ediblewild Australian mushrooms. Food Science and Technology International, 18(4), 367–379.
  • 51. Jaworska, G., Pogon, K., Bernas, E., Gabor, A. (2014).Vitamins, phenolics and antioxidant activity of culinary prepared Suillus luteus (L.) Roussel mushroom. Food Science and Technology, 99, 701-706.
  • 52. Heleno, S.A., Barros, L., Sousa, M.J., Martins, A., Ferreira, I.C.F.R. (2010). Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chemistry, 119,1443-1450.
  • 53. Miura, Y., Kondo, K., Saito, T., Shimada, H., Fraser, P. and Misawa, N. (1998). Production of the carotenoids lycopene, carotene, and astaxanhin in the food yeast candida utilis. Applied and Environmental Microbiology, 64, 1226–1229.
  • 54. Lindshield, B.L., Canene-Adams, K., Erdman Jr, J.W. (2007). Lycopenoids. Journal of Nutrition, 122(11), 2161-2166.
  • 55. Yaping, Z., Suping, Q., Wenli, Y., Zheng, X., Hong, S., Side, Y.,Da-pu,W. (2002). Antioxidant activity of lycopene extracted from tomato paste towards tri chloro methyl peroxyl radical CCl3O2. Food Chemistry, 77, 209-212.
  • 56. Barranco, P.G., Ocanas, L.G., Cabrera, L.V., Carmona, M.C.S., Ocanas, F.G., Gomez, X.S.R., Rangel,R.L. (2010). Evaluation of antioxidant, immunomodulating, cytotoxic and antimicrobial properties of different strains of Basidiomycetes from Northeastern Mexico. Journal of Medicinal Plants Research, 4(17), 1762-1769.
  • 57. Duman, R., Doğan, H.H., Ateş, A. (2003).Morchella conica (Pers.) Boudier and Suillus luteus (L.) S. F. Gray Makrofunguslarının Antimikrobiyal Aktiviteleri. Selçuk Üniversitesi Fen Edebiyat Dergisi, 22, 19-24.
  • 58. Santos, T., Tavares, C., Sousa, D., Vaz, J.A., Calhelha, R.C., Martins, A., Ferreira, I.C.F.R.,Vasconcelos, H.M. (2013). Suillus luteus methanolic extract inhibits cell growth and proliferation of a colon cancer cell line. Food Research Intertational, 53, 476-481.
  • 59. Vaz, J.A., Ferreira, I.C., Tavares, C., Almedia, G.M., Martins, A., Vesconcelos, M. (2012). Suillus collinitus methanolic extract ıncreases P53 expression and causes cell cycle arrest and apoptosis in a breast cancer cell line. Food Chem, 135, 596–602.
  • 60. Lage, H. (2008).An overview of cancer multidrug resistance: a stil unsolved problem. Cellular and Molecular Life Sciences, 65, 3145-3167.
There are 60 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Erdi Can Aytar 0000-0001-6045-0183

İlgaz Akata 0000-0002-1731-1302

Leyla Açık 0000-0002-3672-8429

Publication Date September 30, 2020
Submission Date March 20, 2020
Acceptance Date June 12, 2020
Published in Issue Year 2020

Cite

APA Aytar, E. C., Akata, İ., & Açık, L. (2020). ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. Journal of Faculty of Pharmacy of Ankara University, 44(3), 373-387. https://doi.org/10.33483/jfpau.707014
AMA Aytar EC, Akata İ, Açık L. ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. Ankara Ecz. Fak. Derg. September 2020;44(3):373-387. doi:10.33483/jfpau.707014
Chicago Aytar, Erdi Can, İlgaz Akata, and Leyla Açık. “ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS”. Journal of Faculty of Pharmacy of Ankara University 44, no. 3 (September 2020): 373-87. https://doi.org/10.33483/jfpau.707014.
EndNote Aytar EC, Akata İ, Açık L (September 1, 2020) ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. Journal of Faculty of Pharmacy of Ankara University 44 3 373–387.
IEEE E. C. Aytar, İ. Akata, and L. Açık, “ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS”, Ankara Ecz. Fak. Derg., vol. 44, no. 3, pp. 373–387, 2020, doi: 10.33483/jfpau.707014.
ISNAD Aytar, Erdi Can et al. “ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS”. Journal of Faculty of Pharmacy of Ankara University 44/3 (September 2020), 373-387. https://doi.org/10.33483/jfpau.707014.
JAMA Aytar EC, Akata İ, Açık L. ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. Ankara Ecz. Fak. Derg. 2020;44:373–387.
MLA Aytar, Erdi Can et al. “ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS”. Journal of Faculty of Pharmacy of Ankara University, vol. 44, no. 3, 2020, pp. 373-87, doi:10.33483/jfpau.707014.
Vancouver Aytar EC, Akata İ, Açık L. ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. Ankara Ecz. Fak. Derg. 2020;44(3):373-87.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.