Research Article
BibTex RIS Cite

Fetal malnütrisyonlu term bebeklerde ilk iki yaştaki büyüme, glukoz, insülin ve lipid profili

Year 2023, , 1820 - 1825, 01.10.2023
https://doi.org/10.38136/jgon.1061312

Abstract

Amaç: Fetal dönemde büyüme kısıtlılığı, ileri yaşlarda metabolik hastalıkların gelişimini etkileyebilir. Bu çalışmada, fetal malnütrisyonu olan ve olmayan term yenidoğan bebeklerin ilk iki yaştaki büyümelerinin ve ikinci yaştaki glukoz, insülin ve lipid profillerinin karşılaştırılması amaçlanmıştır.

Gereç ve Yöntemler: Çalışmaya Mayıs 2019 ile Ekim 2019 tarihleri arasında hastanemizde doğan, CANSCORE yöntemi kullanılarak fetal malnütrisyon saptanan ve saptanmayan term bebekler alındı. Umblikal kord kanında insülin, glukoz, total kolesterol, LDL kolesterol, HDL kolesterol, VLDL kolesterol, trigliserid değerlerine bakıldı. Bu bebeklerin iki yaşına kadar büyümeleri takip edildi. İkinci yıl sonunda aynı paramtrelere yeniden bakıldı.

Bulgular: Fetal malnutrisyon saptanan 40 bebekten 26’sı, fetal malnutrisyon saptanmayan 40 bebekten 22’si iki yıl boyunca takip edildi. Fetal malnütrisyonu olan bebeklerin 6. ayında vücut ağırlığı, boy uzunluğu ve baş çevresinin, fetal malnütrisyonlu olmayan bebeklere göre daha yüksek olduğu ancak 12 ve 24. ayda bu farkın gerilediği görüldü. Yaşamının ikinci yılında bakılan glikoz, insülin, total kolesterol, LDL kolesterol, HDL kolesterol düzeyleri arasında her iki grup arasında anlamlı farklılık yokken, VLDL kolesterol ve trigliserid düzeyleri fetal malnütrisyonu olan grupta anlamlı olarak daha yüksek saptandı.

Sonuç: Fetal malnütrisyonlu bebeklerde yaşamının ilk 6 ayındaki hızlı kilo artışı erken çocukluk dönemindeki lipid profilini etkileyebilir.

References

  • 1. Scott KE, Usher R. Epiphyseal development in fetal malnutrition syndrome. The New England Journal of Medicine. 1964: 270: 822-824.
  • 2. Gluckman PD. Clinical review 68: the endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. Journal of Clinical Endocrinology and Metabolism. 1995: 80; 1047-1050.
  • 3. Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T. Endocrine and nutritional regulation of fetal adipose tissue development. Journal of Endocrinology. 2003:179;293-299.
  • 4. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006:444;847-853.
  • 5. Mercuro G, Bassareo PP, Flore G, et al. Prematurity and low weight at birth as new conditions predisposing to an increased cardiovascular risk. Eur J Prev Cardiol. 2013; 20:357-367.
  • 6. Ben-Shlomo Y, McCarthy A, Hughes R, Tilling K, Davies D, Smith GD. Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension. 2008:52;638-644.
  • 7. Brufani C, Grossi A, Fintini D, et al. Obese children with low birth weight demonstrate impaired beta-cell function during oral glucose tolerance test. J Clin Endocrinol Metab. 2009:94;4448-4452.
  • 8. Osmond C, Barker DJ. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environmental Health Perspectives. 2000:108;545-553.
  • 9. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulindependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993:36;62-67.
  • 10. Eriksson JG, Forsen T, Tuomilehto J, Jaddoe VW, Osmond C, Barker DJ. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia. 2002:45;342-348.
  • 11. Langer O. Fetal macrosomia: etiologic factors. Clinical Obstetrics and Gynecology. 2000:43;283-297.
  • 12. Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Annals New York Academy of Sciences. 2006:1092;138-147.
  • 13. Wilcox AJ. Intrauterine growth retardation: beyond birthweight criteria. Early Human Development. 1983:8;189-193.
  • 14. Metcoff J. Clinical assessment of nutritional status at birth. Fetal malnutrition and SGA are not synonymous. Pediatric Clinics of North America. 1994:41;875-891.
  • 15. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ: 1990:301-259-262.
  • 16. Kopec G, Shekhawat P, Mhanna M. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes Targets Ther. 2017:10;285-295.
  • 17. Leipa la JA, Raivio KO, Sarnesto A, Panteleon A, Fellman V. Intrauterine growth restriction and postnatal steroid treatment effects on insulin sensitivity in preterm neonates. Journal of Pediatrics. 2002:141;472-476.
  • 18. Rotteveel J, van Weissenbruch MM, Twisk JW, Delemarre-Van de Waal HA. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008:122;313-321.
  • 19. Whincup PH, Kaye SJ, Owen CG, et al. Birth weightand risk of type 2 diabetes a systematic review. 2015:300;2886-2897.
  • 20. Alonso-Larruscain IS, Ruibal Francisco JL, Granizo Martinez JJ, Garcia-Garcia ML, Fuentes Ferrer ME. Early markers of endocrinometabolic disease in newborns with delayedintrauterin growth. Clinical Nutrition ESPEN. 2019:34;37-44.
  • 21. Soto N, Bazaes RA, Pena V, et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. Journal of Clinical Endocrinology Metabolism. 2003:88;3645-3650.
  • 22. Verkauskiene R, Beltrand J, Claris O, et al. Impact of fetal growth restriction on body composition and hormonal status at birth in infants of small and appropriate weight for gestational age. Eur J Endocrinol. 2007:157;605-612.
  • 23. Sattar N, Greer IA, Loudon J, et al. Lipoprotein subfraction changes in normal pregnancy: threshold effect of plasma triglyceride on appearance of small, dense low-density lipoprotein. Journal of Clinical Endocrinolology Metabolism. 1997:82;2483-2491.
  • 24. Garcia Diaz D, Gaspar Blazquez MJ, Bienvenido Villalba M, Granizo Dominguez V, Jimenez Bustos JM. Relationship between lipoprotein profile in cord blood with obstetric variables and anthropometry in newborns. Differences related with sex. Clin Investig Arterioscler. 2007:19;215-222.
  • 25. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ.1999:318;427-431.
  • 26. Fonnebo V, Dahl LB, Moe PJ, Ingebretsen OC. Does VLDL-LDL- cholesterol in cord serum predict future level of lipoproteins? Acta Paediatr Scand. 1991:80;780-785.
  • 27. M. Rodie VA, Caslake MJ, Stewart F, et al. Fetal cord plasma lipoprotein status in uncomplicated human pregnancies and in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. Atherosclerosis. 2004:176;181-187.
  • 28. Leunissen RW, Kerkhof GF, Stijnen T, Hokken-Koelega A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009:301;2234-2242.
  • 29. Packard CJ, Shepherd J. Lipoprotein heterogeneity, and apolipoprotein B metabolism. Arteriosclerosis, Thrombosis, Vascular Biology. 1997:17;3542-3556.
  • 30. McAuley KA, Williams SM, Mann JI, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001:24;460-464.

Growth, glucose, insulin and lipid profile in the first two years of term infants with fetal malnutrition

Year 2023, , 1820 - 1825, 01.10.2023
https://doi.org/10.38136/jgon.1061312

Abstract

Aim: Growth restriction in the fetal period may affect the development of metabolic diseases in later ages. In this study, it was aimed to compare the growth of the first two years of age and the glucose, insulin and lipid profiles in the second year of term newborn babies with and without fetal malnutrition.

Materials and Methods: Term infants born in our hospital between May 2019 and October 2019, with and without fetal malnutrition detected using the CANSCORE method were included in the study. Insulin, glucose, total cholesterol, LDL cholesterol, HDL cholesterol, VLDL cholesterol and triglyceride values were measured in the umbilical cord blood. The growth of these babies was followed up to the age of two. At the end of the second year, the same parameters were looked at again.

Results: 26 out of 40 babies with fetal malnutrition and 22 out of 40 babies without fetal malnutrition were followed for two years. It was observed that body weight, height and head circumference of babies with fetal malnutrition were higher at 6 months compared to babies without fetal malnutrition, but this difference regressed at 12 and 24 months. While there was no significant difference between the two groups in terms of glucose, insulin, total cholesterol, LDL cholesterol, and HDL cholesterol levels in the second year of life, VLDL cholesterol and triglyceride levels were found to be significantly higher in the group with fetal malnutrition.

Conclusion: Rapid weight gain in the first 6 months of life in infants with fetal malnutrition may affect the lipid profile in early childhood.

References

  • 1. Scott KE, Usher R. Epiphyseal development in fetal malnutrition syndrome. The New England Journal of Medicine. 1964: 270: 822-824.
  • 2. Gluckman PD. Clinical review 68: the endocrine regulation of fetal growth in late gestation: the role of insulin-like growth factors. Journal of Clinical Endocrinology and Metabolism. 1995: 80; 1047-1050.
  • 3. Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T. Endocrine and nutritional regulation of fetal adipose tissue development. Journal of Endocrinology. 2003:179;293-299.
  • 4. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006:444;847-853.
  • 5. Mercuro G, Bassareo PP, Flore G, et al. Prematurity and low weight at birth as new conditions predisposing to an increased cardiovascular risk. Eur J Prev Cardiol. 2013; 20:357-367.
  • 6. Ben-Shlomo Y, McCarthy A, Hughes R, Tilling K, Davies D, Smith GD. Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension. 2008:52;638-644.
  • 7. Brufani C, Grossi A, Fintini D, et al. Obese children with low birth weight demonstrate impaired beta-cell function during oral glucose tolerance test. J Clin Endocrinol Metab. 2009:94;4448-4452.
  • 8. Osmond C, Barker DJ. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women. Environmental Health Perspectives. 2000:108;545-553.
  • 9. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulindependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993:36;62-67.
  • 10. Eriksson JG, Forsen T, Tuomilehto J, Jaddoe VW, Osmond C, Barker DJ. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. Diabetologia. 2002:45;342-348.
  • 11. Langer O. Fetal macrosomia: etiologic factors. Clinical Obstetrics and Gynecology. 2000:43;283-297.
  • 12. Valsamakis G, Kanaka-Gantenbein C, Malamitsi-Puchner A, Mastorakos G. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Annals New York Academy of Sciences. 2006:1092;138-147.
  • 13. Wilcox AJ. Intrauterine growth retardation: beyond birthweight criteria. Early Human Development. 1983:8;189-193.
  • 14. Metcoff J. Clinical assessment of nutritional status at birth. Fetal malnutrition and SGA are not synonymous. Pediatric Clinics of North America. 1994:41;875-891.
  • 15. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ: 1990:301-259-262.
  • 16. Kopec G, Shekhawat P, Mhanna M. Prevalence of diabetes and obesity in association with prematurity and growth restriction. Diabetes Metab Syndr Obes Targets Ther. 2017:10;285-295.
  • 17. Leipa la JA, Raivio KO, Sarnesto A, Panteleon A, Fellman V. Intrauterine growth restriction and postnatal steroid treatment effects on insulin sensitivity in preterm neonates. Journal of Pediatrics. 2002:141;472-476.
  • 18. Rotteveel J, van Weissenbruch MM, Twisk JW, Delemarre-Van de Waal HA. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008:122;313-321.
  • 19. Whincup PH, Kaye SJ, Owen CG, et al. Birth weightand risk of type 2 diabetes a systematic review. 2015:300;2886-2897.
  • 20. Alonso-Larruscain IS, Ruibal Francisco JL, Granizo Martinez JJ, Garcia-Garcia ML, Fuentes Ferrer ME. Early markers of endocrinometabolic disease in newborns with delayedintrauterin growth. Clinical Nutrition ESPEN. 2019:34;37-44.
  • 21. Soto N, Bazaes RA, Pena V, et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. Journal of Clinical Endocrinology Metabolism. 2003:88;3645-3650.
  • 22. Verkauskiene R, Beltrand J, Claris O, et al. Impact of fetal growth restriction on body composition and hormonal status at birth in infants of small and appropriate weight for gestational age. Eur J Endocrinol. 2007:157;605-612.
  • 23. Sattar N, Greer IA, Loudon J, et al. Lipoprotein subfraction changes in normal pregnancy: threshold effect of plasma triglyceride on appearance of small, dense low-density lipoprotein. Journal of Clinical Endocrinolology Metabolism. 1997:82;2483-2491.
  • 24. Garcia Diaz D, Gaspar Blazquez MJ, Bienvenido Villalba M, Granizo Dominguez V, Jimenez Bustos JM. Relationship between lipoprotein profile in cord blood with obstetric variables and anthropometry in newborns. Differences related with sex. Clin Investig Arterioscler. 2007:19;215-222.
  • 25. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ.1999:318;427-431.
  • 26. Fonnebo V, Dahl LB, Moe PJ, Ingebretsen OC. Does VLDL-LDL- cholesterol in cord serum predict future level of lipoproteins? Acta Paediatr Scand. 1991:80;780-785.
  • 27. M. Rodie VA, Caslake MJ, Stewart F, et al. Fetal cord plasma lipoprotein status in uncomplicated human pregnancies and in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. Atherosclerosis. 2004:176;181-187.
  • 28. Leunissen RW, Kerkhof GF, Stijnen T, Hokken-Koelega A. Timing and tempo of first-year rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA. 2009:301;2234-2242.
  • 29. Packard CJ, Shepherd J. Lipoprotein heterogeneity, and apolipoprotein B metabolism. Arteriosclerosis, Thrombosis, Vascular Biology. 1997:17;3542-3556.
  • 30. McAuley KA, Williams SM, Mann JI, et al. Diagnosing insulin resistance in the general population. Diabetes Care. 2001:24;460-464.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Paediatrics
Journal Section Research Articles
Authors

Sema Tanrıverdi 0000-0002-5681-3647

Publication Date October 1, 2023
Submission Date January 21, 2022
Acceptance Date May 10, 2023
Published in Issue Year 2023

Cite

Vancouver Tanrıverdi S. Fetal malnütrisyonlu term bebeklerde ilk iki yaştaki büyüme, glukoz, insülin ve lipid profili. JGON. 2023;20(3):1820-5.