Research Article
BibTex RIS Cite

BI-RADS sınıflaması meme kanseri risk faktörlerini ne oranda karşılar ve hematolojik parametrelerle ilişkisi nedir?

Year 2020, , 435 - 439, 30.09.2020
https://doi.org/10.38136/jgon.732617

Abstract

Giriş: Memede ele gelen kitle, kadınlarda en sık görülen meme kanserini akla getirir. Ancak meme kitlelerinin iyi huylu olup olmadığının teşhisinin doğru yapılması önemlidir. Bu kitlelerin teşhisinde en sık kullanılan görüntüleme yöntemi mamografidir. Meme Görüntüleme Raporlama ve Veri Sistemi (BI-RADS) kullanılmasının kitlelerin benign veya malign olduğunu ayırmada faydalı olduğu bilinmektedir. Biz bu çalışmamızda, BI-RADS sınıflamasının meme kanseri risk faktörlerini ne oranda karşıladığını ve hematolojik parametrelerle ilişkisini bulmayı amaçladık.
Materyal ve Metot: Hastanemiz meme ve endokrin cerrahisi polikliniğine meme rahatsızlığı şikayetleri ile başvuran mamografi tetkiki sonrası kliniğimize (meme kanseri şüphesi ve/veya tanısıyla) yatırılarak opere edilmiş toplam 380 kadın dahil edildi. Bu retrospektif kohort çalışmada kadınlara yaşı, boyu, kilosu, eğitim durumu, medeni durumu ve ilk adet yaşı soruldu. Ayrıca adet görüp görmediği, gebe kalıp kalmadığı, gebe kaldıysa sayısı, ailede meme kanseri öyküsü olup olmadığı, doğum kontrol hapı veya hormon replasman tedavisi (HRT) kullanıp kullanmadığı soruldu.
Bulgular: Meme kanseri risk faktörlerinden hasta yaşının ≥51 olması (OR 3.1, %95 CI 1.6-6.1) , vücut kitle indeksi (VKİ) ≥27.88 kg/m2 olması (OR 2.7, %95 CI 1.4-5.2), ilk gebelik yaşının ≥30 olması (OR 2.8, %95 CI 1.4-5.8), tam süreli olmayan gebelik sayısının ≥3 olması (OR 4.4, %95 CI 1.7-11.2) ve yoğun meme dokusuna sahip olmanın (OR 5.0, %95 CI 2.6-9.7) BI-RADS 4-5-6 olarak raporlamayı ve meme kanseri olma riskini arttırdı. Nötrofil lökosit/ Lenfosit oranının (NLR) 2.19 ve Trombosit/Lenfosit oranının (PLR) 146.81 ve üzerindeki kadınların mamografilerinin BI-RADS 5-6 olarak raporlamasının anlamlı olarak yüksek olduğu saptandı (Sırasıyla p<0.000, p<0.000).
Sonuç: Meme kanseri artan yaş ve VKİ ile ilişkili olarak artmaktadır. Dens meme dokusuna sahip, ilk doğum yaşı ileri yaşlarda olanlar ve düşük veya kürtaj sayısı yüksek olan kadınlarda meme kanseri riski yüksektir. BI-RADS sınıflaması meme kitlelerin benign veya malign olduğunu ayırmada son derece faydalı ve meme kanseri risk faktörlerinden meme yoğunluğunu saptaması açısından önemlidir.

Supporting Institution

Yok

Thanks

Ankara Şehir Hastanesi Meme ve Endokrin Cerrahisi çalışanlarına teşekkür ederim.

References

  • 1. Castells X, Domingo L, Corominas JM, Torá-Rocamora I, Quintana MJ, Baré M et al. Breast cancer risk after diagnosis by screening mammography of nonproliferative or proliferative benign breast disease: a study from a population-based screening program. Breast Cancer Res Treat. 2015 Jan;149(1):237-44. 2. Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K et al. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005 Jul 21;353(3):229-37. 3. Perry N, Broeders M, de Wolf C, Törnberg S, Holland R, von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition--summary document. Ann Oncol. 2008 Apr;19(4):614-22. 4. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005 Oct;6(10):798-808. 5. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002 Oct;225(1):165-75. 6. Nothacker M, Duda V, Hahn M, Warm M, Degenhardt F, Madjar H et al. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer. 2009 Sep 20;9:335. 7. Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR Am J Roentgenol. 2005 Apr;184(4):1260-5. 8. Gokalp G, Topal U, Kizilkaya E. Power Doppler sonography: anything to add to BI-RADS US in solid breast masses? Eur J Radiol. 2009 Apr;70(1):77-85. 9. Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015 Jun 4;17:79. 10. McConnell JC, O'Connell OV, Brennan K, Weiping L, Howe M, Joseph L et al. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res. 2016 Jan 8;18(1):5. 11. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ et al. Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2007 Jan;16(1):43-9. 12. Ghosh K, Vierkant RA, Frank RD, Winham S, Visscher DW, Pankratz VS et al. Association between mammographic breast density and histologic features of benign breast disease. Breast Cancer Res. 2017 Dec 19;19(1):134. 13. Titus-Ernstoff L, Tosteson AN, Kasales C, Weiss J, Goodrich M, Hatch EE et al. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control. 2006 Dec;17(10):1281-90. 14. Koh CH, Bhoo-Pathy N, Ng KL, Jabir RS, Tan GH, See MH et al. Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br J Cancer. 2015 Jun 30;113(1):150-8. 15. Liu C, Huang Z, Wang Q, Sun B, Ding L, Meng X et al. Usefulness of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in hormone-receptor-negative breast cancer. Onco Targets Ther. 2016 Jul 27;9:4653-60. 16. Pistelli M, De Lisa M, Ballatore Z, et al. Pre-treatment neutrophil to lymphocyte ratio may be a useful tool in predicting survival in early triple negative breast cancer patients. BMC Cancer. 2015 Mar 28;15:195. 17. Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How many etiological subtypes of breast cancer: two, three, four, or more?. J Natl Cancer Inst. 2014 Aug 12;106(8). pii: dju165. 18. Benn M, Tybjærg-Hansen A, Smith GD, Nordestgaard BG. High body mass index and cancer risk-a Mendelian randomisation study. Eur J Epidemiol. 2016 Sep;31(9):879-92. 19. Neuhouser ML, Aragaki AK, Prentice RL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611–621. 20. Engin A. Obesity-associated Breast Cancer: Analysis of risk factors. Adv Exp Med Biol. 2017;960:571-606. 21. Boyd N, Martin L, Stone J, Little L, Minkin S, Yaffe M. A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol Biomarkers Prev 2002;11:1048- 53. 22. Weigel S, Heindel W, Dietz C, et al. Stratification of Breast Cancer Risk in Terms of the Influence of Age and Mammographic density. Rofo. 2020 Feb 27. doi: 10.1055/a-1100-0016. 23. Sarici F, Babacan T, Buyukhatipoglu H, et al. Correlation of educational status and clinicopathological characteristics of breast cancer: a single center experience. J BUON. 2016 Jul-Aug;21(4):826-831. 24. Hinyard L, Wirth LS, Clancy JM, Schwartz T. The effect of marital status on breast cancer-related outcomes in women under 65: A SEER database analysis. Breast. 2017 Apr;32:13-17. 25. Martínez ME1, Unkart JT1, Tao L, et al. Prognostic significance of marital status in breast cancer survival: A population-based study. PLoS One. 2017 May 5;12(5):e0175515. 26. Goddard ET, Bassale S, Schedin T et al. Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk. JAMA Netw Open 2019;2:e186997. 27. Andrieu N, Goldgar DE, Easton DF et al. Pregnancies, breast-feeding, and breast cancer risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J Natl Cancer Inst 2006;98:535-44. 28. Terry MB, Liao Y, Kast K, et al. The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectr. 2018 Dec;2(4):pky078. 29. Brind J, Condly SJ, Lanfranchi A, Rooney B. Induced abortion as an independent risk factor for breast cancer: a systematic review and meta-analysis of studies on south asian women. Issues Law Med. Spring 2018;33(1):32-54. 30. Guthrie GJK, Charles KA, Roxburgh CSD, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol 2013;88:218-30. 31. Krenn-Pilko S, Langsenlehner U, Thurner EM et al. The elevated preoperative platelet-to- lymphocyte ratio predicts poor prognosis in breast cancer patients. Br J Cancer 2014;110(10):2524-30.
Year 2020, , 435 - 439, 30.09.2020
https://doi.org/10.38136/jgon.732617

Abstract

References

  • 1. Castells X, Domingo L, Corominas JM, Torá-Rocamora I, Quintana MJ, Baré M et al. Breast cancer risk after diagnosis by screening mammography of nonproliferative or proliferative benign breast disease: a study from a population-based screening program. Breast Cancer Res Treat. 2015 Jan;149(1):237-44. 2. Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K et al. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005 Jul 21;353(3):229-37. 3. Perry N, Broeders M, de Wolf C, Törnberg S, Holland R, von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition--summary document. Ann Oncol. 2008 Apr;19(4):614-22. 4. Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005 Oct;6(10):798-808. 5. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002 Oct;225(1):165-75. 6. Nothacker M, Duda V, Hahn M, Warm M, Degenhardt F, Madjar H et al. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer. 2009 Sep 20;9:335. 7. Hong AS, Rosen EL, Soo MS, Baker JA. BI-RADS for sonography: positive and negative predictive values of sonographic features. AJR Am J Roentgenol. 2005 Apr;184(4):1260-5. 8. Gokalp G, Topal U, Kizilkaya E. Power Doppler sonography: anything to add to BI-RADS US in solid breast masses? Eur J Radiol. 2009 Apr;70(1):77-85. 9. Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L et al. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res. 2015 Jun 4;17:79. 10. McConnell JC, O'Connell OV, Brennan K, Weiping L, Howe M, Joseph L et al. Increased peri-ductal collagen micro-organization may contribute to raised mammographic density. Breast Cancer Res. 2016 Jan 8;18(1):5. 11. Vachon CM, Brandt KR, Ghosh K, Scott CG, Maloney SD, Carston MJ et al. Mammographic breast density as a general marker of breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2007 Jan;16(1):43-9. 12. Ghosh K, Vierkant RA, Frank RD, Winham S, Visscher DW, Pankratz VS et al. Association between mammographic breast density and histologic features of benign breast disease. Breast Cancer Res. 2017 Dec 19;19(1):134. 13. Titus-Ernstoff L, Tosteson AN, Kasales C, Weiss J, Goodrich M, Hatch EE et al. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control. 2006 Dec;17(10):1281-90. 14. Koh CH, Bhoo-Pathy N, Ng KL, Jabir RS, Tan GH, See MH et al. Utility of pre-treatment neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as prognostic factors in breast cancer. Br J Cancer. 2015 Jun 30;113(1):150-8. 15. Liu C, Huang Z, Wang Q, Sun B, Ding L, Meng X et al. Usefulness of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in hormone-receptor-negative breast cancer. Onco Targets Ther. 2016 Jul 27;9:4653-60. 16. Pistelli M, De Lisa M, Ballatore Z, et al. Pre-treatment neutrophil to lymphocyte ratio may be a useful tool in predicting survival in early triple negative breast cancer patients. BMC Cancer. 2015 Mar 28;15:195. 17. Anderson WF, Rosenberg PS, Prat A, Perou CM, Sherman ME. How many etiological subtypes of breast cancer: two, three, four, or more?. J Natl Cancer Inst. 2014 Aug 12;106(8). pii: dju165. 18. Benn M, Tybjærg-Hansen A, Smith GD, Nordestgaard BG. High body mass index and cancer risk-a Mendelian randomisation study. Eur J Epidemiol. 2016 Sep;31(9):879-92. 19. Neuhouser ML, Aragaki AK, Prentice RL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611–621. 20. Engin A. Obesity-associated Breast Cancer: Analysis of risk factors. Adv Exp Med Biol. 2017;960:571-606. 21. Boyd N, Martin L, Stone J, Little L, Minkin S, Yaffe M. A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol Biomarkers Prev 2002;11:1048- 53. 22. Weigel S, Heindel W, Dietz C, et al. Stratification of Breast Cancer Risk in Terms of the Influence of Age and Mammographic density. Rofo. 2020 Feb 27. doi: 10.1055/a-1100-0016. 23. Sarici F, Babacan T, Buyukhatipoglu H, et al. Correlation of educational status and clinicopathological characteristics of breast cancer: a single center experience. J BUON. 2016 Jul-Aug;21(4):826-831. 24. Hinyard L, Wirth LS, Clancy JM, Schwartz T. The effect of marital status on breast cancer-related outcomes in women under 65: A SEER database analysis. Breast. 2017 Apr;32:13-17. 25. Martínez ME1, Unkart JT1, Tao L, et al. Prognostic significance of marital status in breast cancer survival: A population-based study. PLoS One. 2017 May 5;12(5):e0175515. 26. Goddard ET, Bassale S, Schedin T et al. Association Between Postpartum Breast Cancer Diagnosis and Metastasis and the Clinical Features Underlying Risk. JAMA Netw Open 2019;2:e186997. 27. Andrieu N, Goldgar DE, Easton DF et al. Pregnancies, breast-feeding, and breast cancer risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J Natl Cancer Inst 2006;98:535-44. 28. Terry MB, Liao Y, Kast K, et al. The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectr. 2018 Dec;2(4):pky078. 29. Brind J, Condly SJ, Lanfranchi A, Rooney B. Induced abortion as an independent risk factor for breast cancer: a systematic review and meta-analysis of studies on south asian women. Issues Law Med. Spring 2018;33(1):32-54. 30. Guthrie GJK, Charles KA, Roxburgh CSD, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol 2013;88:218-30. 31. Krenn-Pilko S, Langsenlehner U, Thurner EM et al. The elevated preoperative platelet-to- lymphocyte ratio predicts poor prognosis in breast cancer patients. Br J Cancer 2014;110(10):2524-30.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Obstetrics and Gynaecology
Journal Section Research Articles
Authors

Servet Kocaöz 0000-0002-0085-2380

Ozlem Unal 0000-0003-4297-4930

Şevket Barış Morkavuk 0000-0003-0441-0333

Publication Date September 30, 2020
Submission Date May 5, 2020
Acceptance Date May 16, 2020
Published in Issue Year 2020

Cite

Vancouver Kocaöz S, Unal O, Morkavuk ŞB. BI-RADS sınıflaması meme kanseri risk faktörlerini ne oranda karşılar ve hematolojik parametrelerle ilişkisi nedir?. JGON. 2020;17(3):435-9.