Derleme
BibTex RIS Kaynak Göster

Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi

Yıl 2019, Cilt: 3 Sayı: 2, 38 - 44, 09.03.2020
https://doi.org/10.35333/JOHSE.2020.131

Öz

Laboratuvar, klinik tanıya karar verme aşamasında çok önemli bir yere sahiptir. Pre-preanalitik (test istemi), preanalitik (numunelerin toplanması), analitik (numune analizi), postanalitik (sonuç raporlama), post-post analitik (sonuç değerlendirme) süreçler gibi birbiri içerisine geçmiş fazlar, laboratuvar süreçlerini oluşturup, numune toplanmasından analizine kadar geçen süreçte kendi içlerinde ayrı öneme sahiptirler. Laboratuvar hatalarının %70’den fazlasını preanalitik aşamada meydana gelen hatalar oluşturmaktadır. Bu hataların azaltılması veya en aza indirgenmesi analiz sonuçlarının daha doğru ve güvenilir olmasını sağlayacaktır. Rutin laboratuvar pratiğinde olduğu kadar bilimsel araştırmalarda ve belki de ileride rutin laboratuvar pratiğine girecek olan serbest deoksiribonükleik asit gibi biyobelirteç analizlerinde de preanalitik aşama çok önemlidir ve halen süreç optimizasyonu yapılmamıştır. Analiz öncesi dönemde, hangi aşamaların analizi etkileyebileceği yönündeki araştırmalar analiz sonuçlarını değerlendirme aşamasında yol gösterici olacaktır. Çünkü, analiz için kullanılan tüp seçiminden, numuneyi santrifüj etme hızına kadar birçok analiz öncesi aşamada laboratuvarlar, kendi benimsedikleri metotları ve prosedürleri kullanmaktadırlar. Derlemede, serbest deoksiribonükleik asit analizi öncesi hata kaynakları sebeplerinden bahsedilmiştir.

Kaynakça

  • 1. Lippi, G., Banfi, G., Church, S., Cornes, M., De Carli, G., Grankvist, K., ... & Nybo, M. (2015). Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE). Clinical Chemistry and Laboratory Medicine (CCLM), 53(3), 357-370. https://doi.org/10.1515/cclm-2014-1051
  • 2. Plebani, M. (2012). Quality indicators to detect preanalytical errors in laboratory testing. The Clinical Biochemist Reviews, 33(3), 85. https://doi.org/10.1016/j.cca.2013.07.033
  • 3. Mandel, P. (1948). Les acides nucleiques du plasma sanguin chez 1 homme. CR Seances Soc Biol Fil, 142, 241-243.
  • 4. Nawroz, H., Koch, W., Anker, P., Stroun, M., & Sidransky, D.(1996). Microsatellite alterations in serum DNA of head and neck cancer patients. Nature medicine, 2(9), 1035. https://doi.org/10.1038/nm0996-1035
  • 5. Kaiser, J. (2010). Keeping tabs on tumor DNA. DOI:10.1126/science.327.5969.1074
  • 6. Gahan, P. B., & Swaminathan, R. (2008). Circulating nucleic acids in plasma and serum: recent developments. Annals of the New York Academy of Sciences, 1137(1), 1-6. https://doi.org/10.1196/annals.1448.050
  • 7. Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer—a survey. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1775(1), 181- 232. https://doi.org/10.1016/j.bbcan.2006.10.001
  • 8. Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cellfree nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer, 11(6), 426. https://doi.org/10.1038/nrc3066
  • 9. Bronkhorst, A. J., Aucamp, J., & Pretorius, P. J. (2015). Cellfree DNA: preanalytical variables. Clinica Chimica Acta, 450,243-253. https://doi.org/10.1016/j.cca.2015.08.028
  • 10. Leon, S. A., Shapiro, B., Sklaroff, D. M., & Yaros, M. J.(1977). Free DNA in the serum of cancer patients and the effect of therapy. Cancer research, 37(3), 646-650. DOI:Published March 1977
  • 11. Beau‐Faller, M., Gaub, M. P., Schneider, A., Ducrocq, X., Massard, G., Gasser, B., ... & Weitzenblum, E. (2003). Plasma DNA microsatellite panel as sensitive and tumorspecific marker in lung cancer patients. International journal of cancer, 105(3), 361-370. https://doi.org/10.1002/ijc.11079
  • 12. Coulet, F., Blons, H., Cabelguenne, A., Lecomte, T., Laccourreye, O., Brasnu, D., ... & Laurent-Puig, P. (2000). Detection of plasma tumor DNA in head and neck squamous cell carcinoma by microsatellite typing and p53 mutation analysis. Cancer research, 60(3), 707-711. DOI: Published February 2000
  • 13. Maebo, A. (1990). Plasma DNA level as a tumor marker in primary lung cancer. The Japanese journal of thoracic diseases, 28(8), 1085-1091. https://doi.org/10.11389/ jjrs1963.28.1085
  • 14. Sozzi, G., Conte, D., Leon, M., Cirincione, R., Roz, L., Ratcliffe, C., ... & Pierotti, M. A. (2003). Quantification of free circulating DNA as a diagnostic marker in lung cancer. Journal of clinical oncology, 21(21), 3902-3908.
  • 15. Sozzi, G., Conte, D., Mariani, L., Vullo, S. L., Roz, L., Lombardo, C., ... & Tavecchio, L. (2001). Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer research, 61(12), 4675-4678. DOI: Published June 2001
  • 16. Gautschi, O., Bigosch, C., Huegli, B., Jermann, M., Marx, A., Chassé, E., ... & Stahel, R. A. (2004). Circulating deoxyribonucleic acid as prognostic marker in non-smallcell lung cancer patients undergoing chemotherapy. Journal of Clinical Oncology, 22(20), 4157-4164. DOI: 10.1200/JCO.2004.11.123
  • 17. Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer—a survey. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1775(1), 181-232. https://doi.org/10.1016/j.bbcan.2006.10.001
  • 18. Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cellfree nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer, 11(6), 426. https://doi.org/10.1038/nrc3066
  • 19. Jung, K., Fleischhacker, M., & Rabien, A. (2010). Cell-free DNA in the blood as a solid tumor biomarker—a critical appraisal of the literature. Clinica chimica acta, 411(21-22), 1611-1624. https://doi.org/10.1016/j.cca.2010.07.032
  • 20. Jen, J. I. N., Wu, L. I., & Sidransky, D. (2000). An overview on the isolation and analysis of circulating tumor DNA in plasma and serum. Annals of the New York Academy of Sciences, 906(1), 8-12.
  • 21. El Messaoudi, S., Rolet, F., Mouliere, F., & Thierry, A. R. (2013). Circulating cell free DNA: preanalytical considerations. Clinica Chimica Acta, 424, 222-230. https://doi.org/10.1016/j.cca.2013.05.022
  • 22. Van der Vaart, M., & Pretorius, P. J. (2010). Is the role of circulating DNA as a biomarker of cancer being prematurely overrated?. Clinical biochemistry, 43(1-2), 26-36. https://doi.org/10.1016/j.clinbiochem.2009.08.027
  • 23. Zhong, X. Y., Bürk, M. R., Troeger, C., Kang, A., Holzgreve, W., & Hahn, S. (2000). Fluctuation of maternal and fetal free extracellular circulatory DNA in maternal plasma. Obstetrics & Gynecology, 96(6), 991-996. https://doi.org/10.1016/S0029-7844(00)01065-6
  • 24. Stroun, M., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., & Beljanski, M. (1989). Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology, 46(5), 318-322. https://doi.org/10.1159/000226740
  • 25. de Kok, J. B., Hendriks, J. C., van Solinge, W. W., Willems, H. L., Mensink, E. J., & Swinkels, D. W. (1998). Use of real-time quantitative PCR to compare DNA isolation methods. Clinical chemistry, 44(10), 2201-2204.
  • 26. Malentacchi, F., Pizzamiglio, S., Verderio, P., Pazzagli, M., Orlando, C., Ciniselli, C. M., ... & Gelmini, S. (2015). Influence of storage conditions and extraction methods on the quantity and quality of circulating cell-free DNA (ccfDNA): the SPIDIA-DNAplas External Quality Assessment experience. Clinical Chemistry and Laboratory Medicine (CCLM), 53(12), 1935-1942. https://doi.org/10.1515/cclm-2014-1161
  • 27. Lee, T. H., Montalvo, L., Chrebtow, V., & Busch, M. P. (2001). Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion, 41(2), 276-282. https://doi.org/10.1046/j.1537-2995.2001.410.20276.x
  • 28. Board, R. E., Williams, V. S., Knight, L., Shaw, J., Greystoke, A., Ranson, M., ... & Hughes, A. (2008). Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Annals of the New York Academy of Sciences, 1137(1), 98-107. https://doi.org/10.1196/annals.1448.020
  • 29. Chan, K. A., Yeung, S. W., Lui, W. B., Rainer, T. H., & Lo, Y. D. (2005). Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clinical chemistry, 51(4), 781-784. DOI: 10.1373/clinchem.2004.046219 30. Lui, Y. Y., Chik, K. W., Chiu, R. W., Ho, C. Y., Lam, C. W., & Lo, Y. D. (2002). Predominant hematopoietic origin of cellfree DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clinical chemistry, 48(3), 421-427.
  • 31. Chen, Z., Fadiel, A., Naftolin, F., Eichenbaum, K. D., & Xia, Y. (2005). Circulation DNA: biological implications for cancer metastasis and immunology. Medical hypotheses, 65(5), 956-961. https://doi.org/10.1016/j.mehy.2005.04.042
  • 32. Harpel, P. C., Gordon, B. R., & Parker, T. S. (1989). Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proceedings of the National Academy of Sciences, 86(10), 3847-3851. https://doi.org/10.1073/pnas.86.10.3847
  • 33. Berckmans, R. J., Nieuwland, R., Böing, A. N., Romijn, F. P., Hack, C. E., & Sturk, A. (2001). Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thrombosis and haemostasis, 85(04), 639-649. DOI: 10.1055/s-0037.161.5646
  • 34. Thierry, A. R., Mouliere, F., Gongora, C., Ollier, J., Robert, B., Ychou, M., ... & Molina, F. (2010). Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic acids research, 38(18), 6159-6175. https://doi.org/10.1093/nar/gkq421
  • 35. Chiu, R. W., Poon, L. L., Lau, T. K., Leung, T. N., Wong, E. M., & Lo, Y. D. (2001). Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clinical chemistry, 47(9), 1607-1613.
  • 36. Herrera, L. J., Raja, S., Gooding, W. E., El-Hefnawy, T., Kelly, L., Luketich, J. D., & Godfrey, T. E. (2005). Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clinical chemistry, 51(1), 113-118. DOI: 10.1373/clinchem.2004.039263
  • 37. Lui, Y. Y., Chik, K. W., Chiu, R. W., Ho, C. Y., Lam, C. W., & Lo, Y. D. (2002). Predominant hematopoietic origin of cellfree DNA in plasma and serum after sex-ismatched bone marrow transplantation. Clinical chemistry, 48(3), 421-427.
  • 38. Lam, N. Y., Rainer, T. H., Chiu, R. W., & Lo, Y. D. (2004). EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clinical chemistry, 50(1), 256-257. DOI: 10.1373/clinchem.2003.026013
  • 39. Beutler, E., Gelbart, T., & Kuhl, W. (1990). Interference of heparin with the polymerase chain reaction. Biotechniques, 9(2).
  • 40. Xue, X., Teare, M. D., Holen, I., Zhu, Y. M., & Woll, P. J. (2009). Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clinica chimica acta, 404(2), 100-104. https://doi.org/10.1016/j.cca.2009.02.018
  • 41. Jung, M., Klotzek, S., Lewandowski, M., Fleischhacker, M., & Jung, K. (2003). Changes in concentration of DNA in serum and plasma during storage of blood samples. Clinical chemistry, 49(6), 1028-1029. DOI: 10.1373/49.6.1028
  • 42. Swinkels, D. W., Wiegerinck, E., Steegers, E. A., & de Kok, J. B. (2003). Effects of blood-processing protocols on cellfree DNA quantification in plasma. Clinical chemistry, 49(3), 525-526. DOI: 10.1373/49.3.525
  • 43. Hidestrand, M., Stokowski, R., Song, K., Oliphant, A., Deavers, J., Goetsch, M., ... & Tomita-Mitchell, A. (2012). Influence of temperature during transportation on cell-free DNA analysis. Fetal diagnosis and therapy, 31(2), 122-128. https://doi.org/10.1159/000335020
  • 44. Fernando, M. R., Chen, K., Norton, S., Krzyzanowski, G., Bourne, D., Hunsley, B., ... & Bassett, C. (2010). A new methodology to preserve the original proportion and integrity of cell‐free fetal DNA in maternal plasma during sample processing and storage. Prenatal Diagnosis: Published in Affiliation With the International Society for Prenatal Diagnosis, 30(5), 418-424. https://doi.org/10.1002/pd.2484
  • 45. Gaillard, C., & Strauss, F. R. A. N. Ç. O. I. S. (2001). Eliminating DNA loss and denaturation during storage in plastic microtubes. American Clinical Laboratory, 20(2), 52-54.
  • 46. Gaillard, C., & Strauss, F. (1998). Avoiding adsorption of DNA to polypropylene tubes and denaturation of short DNA fragments. Technical Tips Online, 3(1), 63-65.
  • 47. Belotserkovskii, B. P., Johnston, B. H., Gaillard, C., & Strauss, F. (1996). Polypropylene tube surfaces may induce denaturation and multimerization of DNA. SCIENCE-NEW YORK THEN WASHINGTON-, 222-222.
  • 48. Belotserkovskii, B. P., & Johnston, B. H. (1997). Denaturation and association of DNA sequences by certain polypropylene surfaces. Analytical biochemistry, 251(2), 251-262. https://doi.org/10.1006/abio.1997.2249
  • 49. Gaillard, C., & Strauss, F. (1994). Association of poly (CA). poly (TG) DNA fragments into four-stranded complexes bound by HMG1 and 2. Science, 264(5157), 433-436. DOI:10.1126/science.8153633

Importance of Preanalytical Phase in Cell Free Deoxyribonucleic Acid Analysis

Yıl 2019, Cilt: 3 Sayı: 2, 38 - 44, 09.03.2020
https://doi.org/10.35333/JOHSE.2020.131

Öz

The laboratory plays an important role in the decision-making process of clinical diagnosis. Pre-preanalytical (test order), preanalytical (sample collection), analytical (sample analysis), post-analytical (result reporting), post-post analytical (result evaluation) processes are intertwined phases and these phases form the laboratory processes and are of particular importance in the process from sample collection to analysis. More than 70% of laboratory errors occur in the pre-analytical phase. Reducing or minimizing these errors will make the analysis results more accurate and reliable. As well as routine laboratory practice, the pre-analytical phase is very important in scientific research, and perhaps in biomarkers such as cell-free deoxyribonucleic acid that will be introduced into routine laboratory practice in the future,
and process optimization has not yet been performed. Because many laboratories use their own adopted methods and procedures in many stages from the selection of tubes used for analysis to the speed of centrifugation of the sample, and as in routine laboratory practice, there is no clear procedure to be used by all world laboratories and reference laboratories. In the future, we will be able to determine the procedures for the most appropriate preanalytical steps with the pre-analytical process management and error detection studies that we will do for our own studies in the pre-analytical phase and with the light of the information in the literature. In this review, the causes of error sources before free deoxyribonucleic acid analysis are mentioned.

Kaynakça

  • 1. Lippi, G., Banfi, G., Church, S., Cornes, M., De Carli, G., Grankvist, K., ... & Nybo, M. (2015). Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE). Clinical Chemistry and Laboratory Medicine (CCLM), 53(3), 357-370. https://doi.org/10.1515/cclm-2014-1051
  • 2. Plebani, M. (2012). Quality indicators to detect preanalytical errors in laboratory testing. The Clinical Biochemist Reviews, 33(3), 85. https://doi.org/10.1016/j.cca.2013.07.033
  • 3. Mandel, P. (1948). Les acides nucleiques du plasma sanguin chez 1 homme. CR Seances Soc Biol Fil, 142, 241-243.
  • 4. Nawroz, H., Koch, W., Anker, P., Stroun, M., & Sidransky, D.(1996). Microsatellite alterations in serum DNA of head and neck cancer patients. Nature medicine, 2(9), 1035. https://doi.org/10.1038/nm0996-1035
  • 5. Kaiser, J. (2010). Keeping tabs on tumor DNA. DOI:10.1126/science.327.5969.1074
  • 6. Gahan, P. B., & Swaminathan, R. (2008). Circulating nucleic acids in plasma and serum: recent developments. Annals of the New York Academy of Sciences, 1137(1), 1-6. https://doi.org/10.1196/annals.1448.050
  • 7. Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer—a survey. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1775(1), 181- 232. https://doi.org/10.1016/j.bbcan.2006.10.001
  • 8. Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cellfree nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer, 11(6), 426. https://doi.org/10.1038/nrc3066
  • 9. Bronkhorst, A. J., Aucamp, J., & Pretorius, P. J. (2015). Cellfree DNA: preanalytical variables. Clinica Chimica Acta, 450,243-253. https://doi.org/10.1016/j.cca.2015.08.028
  • 10. Leon, S. A., Shapiro, B., Sklaroff, D. M., & Yaros, M. J.(1977). Free DNA in the serum of cancer patients and the effect of therapy. Cancer research, 37(3), 646-650. DOI:Published March 1977
  • 11. Beau‐Faller, M., Gaub, M. P., Schneider, A., Ducrocq, X., Massard, G., Gasser, B., ... & Weitzenblum, E. (2003). Plasma DNA microsatellite panel as sensitive and tumorspecific marker in lung cancer patients. International journal of cancer, 105(3), 361-370. https://doi.org/10.1002/ijc.11079
  • 12. Coulet, F., Blons, H., Cabelguenne, A., Lecomte, T., Laccourreye, O., Brasnu, D., ... & Laurent-Puig, P. (2000). Detection of plasma tumor DNA in head and neck squamous cell carcinoma by microsatellite typing and p53 mutation analysis. Cancer research, 60(3), 707-711. DOI: Published February 2000
  • 13. Maebo, A. (1990). Plasma DNA level as a tumor marker in primary lung cancer. The Japanese journal of thoracic diseases, 28(8), 1085-1091. https://doi.org/10.11389/ jjrs1963.28.1085
  • 14. Sozzi, G., Conte, D., Leon, M., Cirincione, R., Roz, L., Ratcliffe, C., ... & Pierotti, M. A. (2003). Quantification of free circulating DNA as a diagnostic marker in lung cancer. Journal of clinical oncology, 21(21), 3902-3908.
  • 15. Sozzi, G., Conte, D., Mariani, L., Vullo, S. L., Roz, L., Lombardo, C., ... & Tavecchio, L. (2001). Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer research, 61(12), 4675-4678. DOI: Published June 2001
  • 16. Gautschi, O., Bigosch, C., Huegli, B., Jermann, M., Marx, A., Chassé, E., ... & Stahel, R. A. (2004). Circulating deoxyribonucleic acid as prognostic marker in non-smallcell lung cancer patients undergoing chemotherapy. Journal of Clinical Oncology, 22(20), 4157-4164. DOI: 10.1200/JCO.2004.11.123
  • 17. Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer—a survey. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1775(1), 181-232. https://doi.org/10.1016/j.bbcan.2006.10.001
  • 18. Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cellfree nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer, 11(6), 426. https://doi.org/10.1038/nrc3066
  • 19. Jung, K., Fleischhacker, M., & Rabien, A. (2010). Cell-free DNA in the blood as a solid tumor biomarker—a critical appraisal of the literature. Clinica chimica acta, 411(21-22), 1611-1624. https://doi.org/10.1016/j.cca.2010.07.032
  • 20. Jen, J. I. N., Wu, L. I., & Sidransky, D. (2000). An overview on the isolation and analysis of circulating tumor DNA in plasma and serum. Annals of the New York Academy of Sciences, 906(1), 8-12.
  • 21. El Messaoudi, S., Rolet, F., Mouliere, F., & Thierry, A. R. (2013). Circulating cell free DNA: preanalytical considerations. Clinica Chimica Acta, 424, 222-230. https://doi.org/10.1016/j.cca.2013.05.022
  • 22. Van der Vaart, M., & Pretorius, P. J. (2010). Is the role of circulating DNA as a biomarker of cancer being prematurely overrated?. Clinical biochemistry, 43(1-2), 26-36. https://doi.org/10.1016/j.clinbiochem.2009.08.027
  • 23. Zhong, X. Y., Bürk, M. R., Troeger, C., Kang, A., Holzgreve, W., & Hahn, S. (2000). Fluctuation of maternal and fetal free extracellular circulatory DNA in maternal plasma. Obstetrics & Gynecology, 96(6), 991-996. https://doi.org/10.1016/S0029-7844(00)01065-6
  • 24. Stroun, M., Anker, P., Maurice, P., Lyautey, J., Lederrey, C., & Beljanski, M. (1989). Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology, 46(5), 318-322. https://doi.org/10.1159/000226740
  • 25. de Kok, J. B., Hendriks, J. C., van Solinge, W. W., Willems, H. L., Mensink, E. J., & Swinkels, D. W. (1998). Use of real-time quantitative PCR to compare DNA isolation methods. Clinical chemistry, 44(10), 2201-2204.
  • 26. Malentacchi, F., Pizzamiglio, S., Verderio, P., Pazzagli, M., Orlando, C., Ciniselli, C. M., ... & Gelmini, S. (2015). Influence of storage conditions and extraction methods on the quantity and quality of circulating cell-free DNA (ccfDNA): the SPIDIA-DNAplas External Quality Assessment experience. Clinical Chemistry and Laboratory Medicine (CCLM), 53(12), 1935-1942. https://doi.org/10.1515/cclm-2014-1161
  • 27. Lee, T. H., Montalvo, L., Chrebtow, V., & Busch, M. P. (2001). Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion, 41(2), 276-282. https://doi.org/10.1046/j.1537-2995.2001.410.20276.x
  • 28. Board, R. E., Williams, V. S., Knight, L., Shaw, J., Greystoke, A., Ranson, M., ... & Hughes, A. (2008). Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer. Annals of the New York Academy of Sciences, 1137(1), 98-107. https://doi.org/10.1196/annals.1448.020
  • 29. Chan, K. A., Yeung, S. W., Lui, W. B., Rainer, T. H., & Lo, Y. D. (2005). Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clinical chemistry, 51(4), 781-784. DOI: 10.1373/clinchem.2004.046219 30. Lui, Y. Y., Chik, K. W., Chiu, R. W., Ho, C. Y., Lam, C. W., & Lo, Y. D. (2002). Predominant hematopoietic origin of cellfree DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clinical chemistry, 48(3), 421-427.
  • 31. Chen, Z., Fadiel, A., Naftolin, F., Eichenbaum, K. D., & Xia, Y. (2005). Circulation DNA: biological implications for cancer metastasis and immunology. Medical hypotheses, 65(5), 956-961. https://doi.org/10.1016/j.mehy.2005.04.042
  • 32. Harpel, P. C., Gordon, B. R., & Parker, T. S. (1989). Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proceedings of the National Academy of Sciences, 86(10), 3847-3851. https://doi.org/10.1073/pnas.86.10.3847
  • 33. Berckmans, R. J., Nieuwland, R., Böing, A. N., Romijn, F. P., Hack, C. E., & Sturk, A. (2001). Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thrombosis and haemostasis, 85(04), 639-649. DOI: 10.1055/s-0037.161.5646
  • 34. Thierry, A. R., Mouliere, F., Gongora, C., Ollier, J., Robert, B., Ychou, M., ... & Molina, F. (2010). Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic acids research, 38(18), 6159-6175. https://doi.org/10.1093/nar/gkq421
  • 35. Chiu, R. W., Poon, L. L., Lau, T. K., Leung, T. N., Wong, E. M., & Lo, Y. D. (2001). Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clinical chemistry, 47(9), 1607-1613.
  • 36. Herrera, L. J., Raja, S., Gooding, W. E., El-Hefnawy, T., Kelly, L., Luketich, J. D., & Godfrey, T. E. (2005). Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies. Clinical chemistry, 51(1), 113-118. DOI: 10.1373/clinchem.2004.039263
  • 37. Lui, Y. Y., Chik, K. W., Chiu, R. W., Ho, C. Y., Lam, C. W., & Lo, Y. D. (2002). Predominant hematopoietic origin of cellfree DNA in plasma and serum after sex-ismatched bone marrow transplantation. Clinical chemistry, 48(3), 421-427.
  • 38. Lam, N. Y., Rainer, T. H., Chiu, R. W., & Lo, Y. D. (2004). EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clinical chemistry, 50(1), 256-257. DOI: 10.1373/clinchem.2003.026013
  • 39. Beutler, E., Gelbart, T., & Kuhl, W. (1990). Interference of heparin with the polymerase chain reaction. Biotechniques, 9(2).
  • 40. Xue, X., Teare, M. D., Holen, I., Zhu, Y. M., & Woll, P. J. (2009). Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clinica chimica acta, 404(2), 100-104. https://doi.org/10.1016/j.cca.2009.02.018
  • 41. Jung, M., Klotzek, S., Lewandowski, M., Fleischhacker, M., & Jung, K. (2003). Changes in concentration of DNA in serum and plasma during storage of blood samples. Clinical chemistry, 49(6), 1028-1029. DOI: 10.1373/49.6.1028
  • 42. Swinkels, D. W., Wiegerinck, E., Steegers, E. A., & de Kok, J. B. (2003). Effects of blood-processing protocols on cellfree DNA quantification in plasma. Clinical chemistry, 49(3), 525-526. DOI: 10.1373/49.3.525
  • 43. Hidestrand, M., Stokowski, R., Song, K., Oliphant, A., Deavers, J., Goetsch, M., ... & Tomita-Mitchell, A. (2012). Influence of temperature during transportation on cell-free DNA analysis. Fetal diagnosis and therapy, 31(2), 122-128. https://doi.org/10.1159/000335020
  • 44. Fernando, M. R., Chen, K., Norton, S., Krzyzanowski, G., Bourne, D., Hunsley, B., ... & Bassett, C. (2010). A new methodology to preserve the original proportion and integrity of cell‐free fetal DNA in maternal plasma during sample processing and storage. Prenatal Diagnosis: Published in Affiliation With the International Society for Prenatal Diagnosis, 30(5), 418-424. https://doi.org/10.1002/pd.2484
  • 45. Gaillard, C., & Strauss, F. R. A. N. Ç. O. I. S. (2001). Eliminating DNA loss and denaturation during storage in plastic microtubes. American Clinical Laboratory, 20(2), 52-54.
  • 46. Gaillard, C., & Strauss, F. (1998). Avoiding adsorption of DNA to polypropylene tubes and denaturation of short DNA fragments. Technical Tips Online, 3(1), 63-65.
  • 47. Belotserkovskii, B. P., Johnston, B. H., Gaillard, C., & Strauss, F. (1996). Polypropylene tube surfaces may induce denaturation and multimerization of DNA. SCIENCE-NEW YORK THEN WASHINGTON-, 222-222.
  • 48. Belotserkovskii, B. P., & Johnston, B. H. (1997). Denaturation and association of DNA sequences by certain polypropylene surfaces. Analytical biochemistry, 251(2), 251-262. https://doi.org/10.1006/abio.1997.2249
  • 49. Gaillard, C., & Strauss, F. (1994). Association of poly (CA). poly (TG) DNA fragments into four-stranded complexes bound by HMG1 and 2. Science, 264(5157), 433-436. DOI:10.1126/science.8153633
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Burak Arslan Bu kişi benim 0000-0001-7229-3226

Aylin Sepici Dinçel Bu kişi benim 0000-0001-5847-0556

Yayımlanma Tarihi 9 Mart 2020
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 2

Kaynak Göster

APA Arslan, B., & Sepici Dinçel, A. (2020). Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi. Sağlık Hizmetleri Ve Eğitimi Dergisi, 3(2), 38-44. https://doi.org/10.35333/JOHSE.2020.131
AMA Arslan B, Sepici Dinçel A. Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi. SHED. Mart 2020;3(2):38-44. doi:10.35333/JOHSE.2020.131
Chicago Arslan, Burak, ve Aylin Sepici Dinçel. “Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi”. Sağlık Hizmetleri Ve Eğitimi Dergisi 3, sy. 2 (Mart 2020): 38-44. https://doi.org/10.35333/JOHSE.2020.131.
EndNote Arslan B, Sepici Dinçel A (01 Mart 2020) Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi. Sağlık Hizmetleri ve Eğitimi Dergisi 3 2 38–44.
IEEE B. Arslan ve A. Sepici Dinçel, “Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi”, SHED, c. 3, sy. 2, ss. 38–44, 2020, doi: 10.35333/JOHSE.2020.131.
ISNAD Arslan, Burak - Sepici Dinçel, Aylin. “Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi”. Sağlık Hizmetleri ve Eğitimi Dergisi 3/2 (Mart 2020), 38-44. https://doi.org/10.35333/JOHSE.2020.131.
JAMA Arslan B, Sepici Dinçel A. Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi. SHED. 2020;3:38–44.
MLA Arslan, Burak ve Aylin Sepici Dinçel. “Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi”. Sağlık Hizmetleri Ve Eğitimi Dergisi, c. 3, sy. 2, 2020, ss. 38-44, doi:10.35333/JOHSE.2020.131.
Vancouver Arslan B, Sepici Dinçel A. Serbest Deoksiribonükleik Asit Analizinde Preanalitik Aşamanın Önemi. SHED. 2020;3(2):38-44.