Research Article
BibTex RIS Cite

Assessment of High-Performance Fiber Reinforced Concrete (HPFRC) Durability Due to Exposing to Different Environmental Media

Year 2021, Volume: 3 Issue: 2, 93 - 114, 31.12.2021

Abstract

The durability and mechanical properties of High-Performance Fiber Reinforced Concrete, HPFRC, are experimentally investigated in this study after being exposed to four different media. Those media were air, water, sodium chloride, and magnesium sulfate with 7% concentration for both chloride and sulfate. Hooked-end galvanized steel fiber 50 mm length with three different fiber volume fractions, Vf, as follows 0.5%, 1% and 1.5% and polypropylene fiber with, Vf, 0.1%, 0.3%, and 0.5% were invoked in concrete containing macro silica fume, SF. Compressive, indirect tensile, and flexural tests were conducted on HPFRC specimens after exposing them to previous media after 28 and 180 days of exposure. The test results in the present work indicated that the HPFRC containing steel fiber is more durable than the other one containing polypropylene fiber, especially when exposed to sodium chloride and magnesium sulfate media. Moreover, the optimum values for compressive strength of HPFRC are obtained when Vf equals 1% for steel fiber and 0.3% for polypropylene fiber. On the other hand, the optimum values for indirect tensile and flexural strengths of HPFRC are obtained when Vf equals 1.5% for steel fiber and 0.5% for polypropylene fiber.

Supporting Institution

Zagazig university

References

  • [1] R.B. Polder, M.R.D. Rooij. (2005). Durability of marine concrete structures– field investigations and modelling, Heron.
  • [2] D. A. Hensher. (2016) Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications”
  • [3] M. Vlasblom. (2018). The Manufacture, Properties, and Applications of High-strength, High modulus Polyethylene Fibers, Handbook of Properties of Textile and Technical Fibers. https://doi.org/10.1016/B978-0-08-101272-7.00018-3.
  • [4] Koksal, Fuat & Altun, Fatih & Yiğit, İlhami & Sahin, Yusa. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials. 22. 1874-1880. http://dx.doi.org/10.1016/j.conbuildmat.2007.04.017.
  • [5] Patel, M.J. and S. Kulkarni. (2012). Effect of polypropylene fiber on the High Strength Concrete. Journal of Information, Knowledge and Research in Civil Engineering. 0975 – 6744
  • [6] Ahmed, S., Bukhari, I., Siddiqi, J. (2006). A study on properties of polypropylene fiber reinforced concrete. in 31st conference on our world in concrete & structures.
  • [7] Mashrei, Mohammed & Sultan, Ali & M. Mahdi, Alaa. (2018). Effects of polypropylene fibers on compressive and flexural strength of concrete material. International Journal of Civil Engineering and Technology. 9. 2208-2217.
  • [8] J. Gao, W. Suq, K. Morino.(1997). Mechanical Properties of Steel Fiber-reinforced, High-strength, Lightweight Concrete Cement and Concrete Composites 307-313.
  • [9] Song, P., S. Hwang. and B. Sheu. (2005). Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 35: 1546-1550. http://dx.doi.org/10.1016/j.cemconres.2004.06.033
  • [10] Sadiqul, I. G. M. and S. D. Gupta. (2016). Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. Int. J. Sustain. Built Environ. 5: 345-354. http://dx.doi.org/10.1016/j.ijsbe.2016.05.007
  • [11] Hasan, Arsalan & Maroof, Nyazi & Ibrahim, Yassin. (2019). Effects of Polypropylene Fiber Content on Strength and Workability Properties of Concrete. Polytechnic Journal. 9. 7-12. 10.25156/ptj.v9n1y2019.pp7-12.

Farklı Çevresel Ortamlara Maruz Bırakılan Yüksek Performanslı Lif Takviyeli Beton (HPFRC) Durabilitesinin Değerlendirilmesi

Year 2021, Volume: 3 Issue: 2, 93 - 114, 31.12.2021

Abstract

Bu çalışmada, Yüksek Performanslı Elyaf Takviyeli Beton (HPFRC) dört farklı ortama maruz bırakıldıktan sonra mekanik ve durabilite özellikleri deneysel olarak incelenmiştir. Bu ortamlar hava, su, her ikisi de %7 konsantrasyonda sodyum klorür ve magnezyum sülfattır. 50 mm uzunluğunda kanca uçlu galvanizli çelik lif %0.5, %1.0 ve %1.5 olmak üzere üç farklı hacim fraksiyonunda (Vf), makro silis dumanı (SF) içeren betonda ise polipropilen lif %0.1, % 0.3 ve %0.5 hacim fraksiyonlarında kullanılmıştır. HPFRC numuneleri önceki ortamlara 28 ve 180 maruz kaldıktan sonra, basınç dayanımı, dolaylı çekme ve eğilme deneyleri gerçekleştirilmiştir. Mevcut çalışmadaki deney sonuçları, çelik lif içeren HPFRC'nin, özellikle sodyum klorür ve magnezyum sülfat ortamına maruz kaldığında, polipropilen lif içeren diğerine göre durabilitesinin daha iyi olduğunu göstermiştir. Ayrıca, HPFRC'nin basınç dayanımı için optimum değerler, Vf, çelik fiber için %1.0 ve polipropilen fiber için %0.3'e eşit olduğunda elde edilmiştir. Bununla birlikte, HPFRC'nin dolaylı çekme ve eğilme dayanımları için optimum değerler, Vf, çelik elyaf için %1.5 ve polipropilen elyaf için %0.5'e eşit olduğunda elde edilmiştir.

References

  • [1] R.B. Polder, M.R.D. Rooij. (2005). Durability of marine concrete structures– field investigations and modelling, Heron.
  • [2] D. A. Hensher. (2016) Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications”
  • [3] M. Vlasblom. (2018). The Manufacture, Properties, and Applications of High-strength, High modulus Polyethylene Fibers, Handbook of Properties of Textile and Technical Fibers. https://doi.org/10.1016/B978-0-08-101272-7.00018-3.
  • [4] Koksal, Fuat & Altun, Fatih & Yiğit, İlhami & Sahin, Yusa. (2008). Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Construction and Building Materials. 22. 1874-1880. http://dx.doi.org/10.1016/j.conbuildmat.2007.04.017.
  • [5] Patel, M.J. and S. Kulkarni. (2012). Effect of polypropylene fiber on the High Strength Concrete. Journal of Information, Knowledge and Research in Civil Engineering. 0975 – 6744
  • [6] Ahmed, S., Bukhari, I., Siddiqi, J. (2006). A study on properties of polypropylene fiber reinforced concrete. in 31st conference on our world in concrete & structures.
  • [7] Mashrei, Mohammed & Sultan, Ali & M. Mahdi, Alaa. (2018). Effects of polypropylene fibers on compressive and flexural strength of concrete material. International Journal of Civil Engineering and Technology. 9. 2208-2217.
  • [8] J. Gao, W. Suq, K. Morino.(1997). Mechanical Properties of Steel Fiber-reinforced, High-strength, Lightweight Concrete Cement and Concrete Composites 307-313.
  • [9] Song, P., S. Hwang. and B. Sheu. (2005). Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 35: 1546-1550. http://dx.doi.org/10.1016/j.cemconres.2004.06.033
  • [10] Sadiqul, I. G. M. and S. D. Gupta. (2016). Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. Int. J. Sustain. Built Environ. 5: 345-354. http://dx.doi.org/10.1016/j.ijsbe.2016.05.007
  • [11] Hasan, Arsalan & Maroof, Nyazi & Ibrahim, Yassin. (2019). Effects of Polypropylene Fiber Content on Strength and Workability Properties of Concrete. Polytechnic Journal. 9. 7-12. 10.25156/ptj.v9n1y2019.pp7-12.
There are 11 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Seleem Ahmad This is me 0000-0001-9894-0209

Eslam Elhwary 0000-0001-6516-2156

Ashraf Elsafoury This is me 0000-0001-6615-3083

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Ahmad, S., Elhwary, E., & Elsafoury, A. (2021). Assessment of High-Performance Fiber Reinforced Concrete (HPFRC) Durability Due to Exposing to Different Environmental Media. Journal of Innovations in Civil Engineering and Technology, 3(2), 93-114.