Review
BibTex RIS Cite

İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri

Year 2023, , 55 - 64, 30.06.2023
https://doi.org/10.58854/jicm.1271253

Abstract

Holobiyont kavramıyla açıklanan binlerce varoluşu içinde barındıran tek bir varoluş olarak insanın sağlık ve hastalık durumlarının şekillenmesinde mikrobiyota oldukça önemli bir rol oynar. Mikrobiyota konak sağlığını doğrudan veya dolaylı mekanizmalarla etkiler. Mikrobiyota patojenlere karşı kolonizasyon direnci oluşturarak doğrudan konak sağlığını destekler. Oluşturduğu metabolitler, salgıladığı nörotransmitter öncülleri veya konağın çeşitli substratlarını biyotransformasyona uğratmak yolaklarıyla da dolaylı yoldan konak sağlığını destekler. Mikrobiyota, mikrobiyota temelli tedavi stratejilerinin geliştirilmesi için pek çok terapötik hedef sunar. Konak- mikrobiyota etkileşim mekanizmaların aydınlatılması şüphesiz ki mikrobiyota temelli yeni ve etkili tedavi yaklaşımlarının geliştirilmesini sağlayabilecektir. Uzun zamandır antibiyotik kullanımının mikrobiyotayı değiştirebildiği ve özellikle uzun süreli kullanımın kommensal mikrobiyota üzerinde tahribat oluşturduğu bilinmekle birlikte; mikrobiyotanın ilaçlar üzerindeki etkisi gündeme gelmemiştir. Yakın zamanda söz edilmeye başlanan farmakomikrobiyomik, ilaçların farmakokinetiği ve toksisitesi üzerinde mikrobiyotanın etkisini inceler. Farmakomikrobiyomik alanındaki çalışmalar ilaç mikrobiyota etkileşiminin çift yönlü olduğunu desteklemekle birlikte bu alanda yapılacak araştırmalar kişiselleştirilmiş ilaç kullanımı ve ilaçların etkiliğinin mikrobiyota yoluyla arttırılması için yol gösterici olacaktır. Bu derlemenin amacı mikrobiyotanın konak üzerindeki etki mekanizmalarına vurgu yapmak ve gelecek vaat eden terapötik bir hedef olarak mikrobiyotanın potansiyelini değerlendirmektir.

Supporting Institution

yok

References

  • Vallès Y, Francino MP. Air pollution, early life microbiome, and development. Current environmental health reports. 2018; 5:512- 521.
  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012
  • Consortium iHMP. The integrative human microbiome project. Nature. 2019;569(7758):641-648.
  • Chong CYL, Bloomfield FH, O’Sullivan JM. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. 2018;10(3):274.
  • Khoruts A. First microbial encounters. Nature medicine. 2016;22(3):231-232.
  • Grönlund MM, Grześkowiak L, Isolauri E, Salminen S. Influence of mother’s intestinal microbiota on gut colonization in the infant. Gut microbes. 2011;2(4):227-233.
  • Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends in molecular medicine. 2015;21(2):109-17.
  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology. 2016;14(10):609-620.
  • Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. Journal of food science and technology. 2015; 52(12), 7577–7587.
  • Parmjit SP, Anal AK, eds. Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications. 1th ed. Hoböken: Wiley, 2022. Book Chapter: In English: Panesar SP, Kumar A, Kaur A&R Probiotics, Prebiotics and Synbiotics: Opportunities, Health Benefits and Industrial Challenges
  • Swanson KS., Gibson GR, Hutkins R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17, 2020; 687–701.
  • Jiao Y, Hasegawa M, Inohara N. The role of oral pathobionts in dysbiosis during periodontitis development. Journal of dental research. 2014;93(6):539-546.
  • Mayneris-Perxachs J, Fernández-Real JM. Exploration of the microbiota and metabolites within body fluids could pinpoint novel disease mechanisms. The FEBS Journal. 2020;287(5):856-865.
  • Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nature medicine. 2018;24(8):1097-1103.
  • Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature reviews microbiology. 2017;15(11):675-687.
  • Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1707):20150504.
  • Lim YY, Lee YS, Ooi DSQ. Engineering the gut microbiome for treatment of obesity: a review of current understanding and progress. Biotechnology Journal. 2020;15(10):2000013.
  • Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 2023 Mar;31(3):254-269.
  • Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas. 2018 Jun; 112:53-63.
  • Dikeocha IJ, Al-Kabsi AM, Miftahussurur M, Alshawsh MA. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. The FASEB Journal. 2022;36(6): e22350.
  • Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Frontiers in microbiology. 2016; 6:1543.
  • Altay O, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine. 2019; 49:364-373.
  • Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environmental Pollution. 2017; 222:1-9.
  • Xie S, Zhang C, Zhao J, Li D, Chen J. Exposure to concentrated ambient PM2. 5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome. Environment International. 2022; 161:107138.
  • Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut microbes. 2014;5(2):215-219.
  • Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9)
  • Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev. 2009 Nov;67 Suppl 2:S183-91.
  • Davis JC, Lewis ZT, Krishnan S, et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Scientific reports. 2017;7(1):1- 16.
  • Elison E, Vigsnaes LK, Krogsgaard LR, et al. Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. British Journal of Nutrition. 2016;116(8):1356-1368.
  • Weichert S, Jennewein S, Hüfner E, et al. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutrition research. 2013;33(10):831- 838.
  • Oliveros E, Ramirez M, Vazquez E, Barranco A, Gruart A, Delgado-Garcia JM et all. Oral supplementation of 2’-fucosyllactose during lactation improves memory and learning in rats. J Nutr Biochem. 2016; 31:20-7.
  • Stewart CJ. Breastfeeding promotes bifidobacterial immunomodulatory metabolites. Nature Microbiology. 2021;6(11):1335-1336.
  • Alam MZ, Maslanka JR, Abt MC. Immunological consequences of microbiome-based therapeutics. Frontiers in Immunology. 2022;13.
  • Rajer M, Segelov E, eds. Current Cancer Treatment 1th ed.intechopen, 2020 Book chapter In English: Neumann S, Peyroux EM, Woodall J M, Shields NJ, Young SL, Pattison ST. The Influence of Microbial Metabolites in the Gastrointestinal Microenvironment on Anticancer Immunity.
  • Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial–neuronal interactions in pain and nociception. Neurobiology of Pain. 2021; 9:100056.
  • Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021;19;13(6):2099.
  • Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nature reviews Gastroenterology & hepatology. 2012;9(2):88-96.
  • Unal RN, Gönen B. Kardiyovasküler Hastalıklarda Bağırsak Mikrobiyota Metaboliti Trimetilamin N-oksit (TMAO): Önleme ve Tedavi İçin Yeni Bir Molekül mü? Akdeniz Tıp Dergisi 2021; 7(3): 436-447
  • Cheng H, Guan X, Chen D, Ma W. The Th17/ Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms. 2019; 20;7(12):583

Exploring The Potential of Microbiota as a Therapeutic Target for Improving Human Health: Current Status and Future Perspectives

Year 2023, , 55 - 64, 30.06.2023
https://doi.org/10.58854/jicm.1271253

Abstract

Microbiota plays a crucial role in shaping human health and disease states as a single existence that encompasses thousands of existences explained by the concept of holobiont. Microbiota directly or indirectly affects host health through various mechanisms. It directly supports host health by creating colonization resistance against pathogens. Indirectly, it supports host health through the production of metabolites, the secretion of neurotransmitter precursors, or the biotransformation of various substrates of the host. Microbiota offers numerous therapeutic targets for the development of microbiota-based treatment strategies. Undoubtedly, elucidating host-microbiota interaction mechanisms will enable the development of new and effective microbiota-based treatment approaches. While it is well-known that antibiotic use can alter the microbiota and cause damage, especially with prolonged use, the impact of microbiota on drugs has not been widely discussed. Recently, the field of pharmacomicrobiomics has emerged, which examines the influence of microbiota on the pharmacokinetics and toxicity of drugs. Studies in the field of pharmacomicrobiomics support the bidirectional nature of drug-microbiota interactions, and further research in this area will provide guidance for personalized drug use and enhancing drug efficacy through the microbiota. The aim of this review is to emphasize the mechanisms of microbiota's impact on the host and evaluate the potential of microbiota as a promising therapeutic target.

References

  • Vallès Y, Francino MP. Air pollution, early life microbiome, and development. Current environmental health reports. 2018; 5:512- 521.
  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012
  • Consortium iHMP. The integrative human microbiome project. Nature. 2019;569(7758):641-648.
  • Chong CYL, Bloomfield FH, O’Sullivan JM. Factors affecting gastrointestinal microbiome development in neonates. Nutrients. 2018;10(3):274.
  • Khoruts A. First microbial encounters. Nature medicine. 2016;22(3):231-232.
  • Grönlund MM, Grześkowiak L, Isolauri E, Salminen S. Influence of mother’s intestinal microbiota on gut colonization in the infant. Gut microbes. 2011;2(4):227-233.
  • Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends in molecular medicine. 2015;21(2):109-17.
  • Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology. 2016;14(10):609-620.
  • Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. Journal of food science and technology. 2015; 52(12), 7577–7587.
  • Parmjit SP, Anal AK, eds. Probiotics, Prebiotics and Synbiotics: Technological Advancements Towards Safety and Industrial Applications. 1th ed. Hoböken: Wiley, 2022. Book Chapter: In English: Panesar SP, Kumar A, Kaur A&R Probiotics, Prebiotics and Synbiotics: Opportunities, Health Benefits and Industrial Challenges
  • Swanson KS., Gibson GR, Hutkins R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17, 2020; 687–701.
  • Jiao Y, Hasegawa M, Inohara N. The role of oral pathobionts in dysbiosis during periodontitis development. Journal of dental research. 2014;93(6):539-546.
  • Mayneris-Perxachs J, Fernández-Real JM. Exploration of the microbiota and metabolites within body fluids could pinpoint novel disease mechanisms. The FEBS Journal. 2020;287(5):856-865.
  • Raffatellu M. Learning from bacterial competition in the host to develop antimicrobials. Nature medicine. 2018;24(8):1097-1103.
  • Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature reviews microbiology. 2017;15(11):675-687.
  • Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1707):20150504.
  • Lim YY, Lee YS, Ooi DSQ. Engineering the gut microbiome for treatment of obesity: a review of current understanding and progress. Biotechnology Journal. 2020;15(10):2000013.
  • Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol. 2023 Mar;31(3):254-269.
  • Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota-drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas. 2018 Jun; 112:53-63.
  • Dikeocha IJ, Al-Kabsi AM, Miftahussurur M, Alshawsh MA. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. The FASEB Journal. 2022;36(6): e22350.
  • Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Frontiers in microbiology. 2016; 6:1543.
  • Altay O, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine. 2019; 49:364-373.
  • Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environmental Pollution. 2017; 222:1-9.
  • Xie S, Zhang C, Zhao J, Li D, Chen J. Exposure to concentrated ambient PM2. 5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome. Environment International. 2022; 161:107138.
  • Salim SY, Kaplan GG, Madsen KL. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut microbes. 2014;5(2):215-219.
  • Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9)
  • Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev. 2009 Nov;67 Suppl 2:S183-91.
  • Davis JC, Lewis ZT, Krishnan S, et al. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Scientific reports. 2017;7(1):1- 16.
  • Elison E, Vigsnaes LK, Krogsgaard LR, et al. Oral supplementation of healthy adults with 2′-O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal microbiota. British Journal of Nutrition. 2016;116(8):1356-1368.
  • Weichert S, Jennewein S, Hüfner E, et al. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutrition research. 2013;33(10):831- 838.
  • Oliveros E, Ramirez M, Vazquez E, Barranco A, Gruart A, Delgado-Garcia JM et all. Oral supplementation of 2’-fucosyllactose during lactation improves memory and learning in rats. J Nutr Biochem. 2016; 31:20-7.
  • Stewart CJ. Breastfeeding promotes bifidobacterial immunomodulatory metabolites. Nature Microbiology. 2021;6(11):1335-1336.
  • Alam MZ, Maslanka JR, Abt MC. Immunological consequences of microbiome-based therapeutics. Frontiers in Immunology. 2022;13.
  • Rajer M, Segelov E, eds. Current Cancer Treatment 1th ed.intechopen, 2020 Book chapter In English: Neumann S, Peyroux EM, Woodall J M, Shields NJ, Young SL, Pattison ST. The Influence of Microbial Metabolites in the Gastrointestinal Microenvironment on Anticancer Immunity.
  • Lagomarsino VN, Kostic AD, Chiu IM. Mechanisms of microbial–neuronal interactions in pain and nociception. Neurobiology of Pain. 2021; 9:100056.
  • Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021;19;13(6):2099.
  • Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nature reviews Gastroenterology & hepatology. 2012;9(2):88-96.
  • Unal RN, Gönen B. Kardiyovasküler Hastalıklarda Bağırsak Mikrobiyota Metaboliti Trimetilamin N-oksit (TMAO): Önleme ve Tedavi İçin Yeni Bir Molekül mü? Akdeniz Tıp Dergisi 2021; 7(3): 436-447
  • Cheng H, Guan X, Chen D, Ma W. The Th17/ Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms. 2019; 20;7(12):583
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review Article
Authors

Selma Sezgin 0000-0001-6452-5613

Early Pub Date June 30, 2023
Publication Date June 30, 2023
Published in Issue Year 2023

Cite

APA Sezgin, S. (2023). İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri. Journal of Immunology and Clinical Microbiology, 8(2), 55-64. https://doi.org/10.58854/jicm.1271253
AMA Sezgin S. İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri. J Immunol Clin Microbiol. June 2023;8(2):55-64. doi:10.58854/jicm.1271253
Chicago Sezgin, Selma. “İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum Ve Gelecek Perspektifleri”. Journal of Immunology and Clinical Microbiology 8, no. 2 (June 2023): 55-64. https://doi.org/10.58854/jicm.1271253.
EndNote Sezgin S (June 1, 2023) İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri. Journal of Immunology and Clinical Microbiology 8 2 55–64.
IEEE S. Sezgin, “İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri”, J Immunol Clin Microbiol, vol. 8, no. 2, pp. 55–64, 2023, doi: 10.58854/jicm.1271253.
ISNAD Sezgin, Selma. “İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum Ve Gelecek Perspektifleri”. Journal of Immunology and Clinical Microbiology 8/2 (June 2023), 55-64. https://doi.org/10.58854/jicm.1271253.
JAMA Sezgin S. İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri. J Immunol Clin Microbiol. 2023;8:55–64.
MLA Sezgin, Selma. “İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum Ve Gelecek Perspektifleri”. Journal of Immunology and Clinical Microbiology, vol. 8, no. 2, 2023, pp. 55-64, doi:10.58854/jicm.1271253.
Vancouver Sezgin S. İnsan Sağlığını İyileştirmede Terapötik Bir Hedef Olarak Mikrobiyotanın Potansiyelini Keşfetmek: Mevcut Durum ve Gelecek Perspektifleri. J Immunol Clin Microbiol. 2023;8(2):55-64.

Cited By

88x31.png 

Creative Commons Attribution Non-Commercial License: The articles in the Journal of Immunology and Clinical Microbiology are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

JICM bir QMEL® Tıp & Yayınevi ürünüdür.