Research Article
BibTex RIS Cite

Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes

Year 2018, Most Accessed Articles, 27 - 33, 05.06.2018
https://doi.org/10.5455/jicm.20170204

Abstract

Background: The aim of our work was to find out the mRNA gene expression level of Aire, Deaf1, Foxp3, Ctla4 and IL10 in mesenteric lymph nodes in the offspring of rats with experimental gestational diabetes and in conditions of insulin oral tolerance formation.

Material and Methods: Using molecular genetic and immunofluorescence techniques we investigated the mRNA gene expression level of Aire, Deaf1, Foxp3, Ctla4 and IL10 in the offspring of rats with experimental gestational diabetes and in conditions of insulin oral tolerance formation. To determine the level of mRNA studied gene RT-PCR was performed in real time thermocycler CFX96 ™ Real-Time PCR Detection Systems.

Results: We observed such violations of immunotolerance: AIRE gene repression, reduced mRNA levels of Deaf1 and the transcription factor Foxp3. This was accompanied by inhibition of gene expression suppressor cytokine IL-10 and negative costimulatory molecules Ctla4.

Conclusion: Oral insulin during the first 2 weeks graded these changes, causing transcriptional activation of genes AIRE, Deaf1, Foxp3, Ctla4 and Il-10.

References

  • 1. Metzger T, Anderson M. Control of central and peripheral tolerance by Aire. Immunol Rev 2011; 241: 89-103.
  • 2. Kojima H, Fujimiya M, Matsumura K. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl. Acad. Sci USA 2004; 101: 2458-2463.
  • 3. Cohen J, Tewalt E, Rouhani S. Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS ONE 2014; 9:e87740.
  • 4. Yip L, Su L, Sheng D. Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat. Immunol. 2009:1026-1033
  • 5. Shevach E, Thornton A. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 2014;259:88-102.
  • 6. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep 2016;6:24249.
  • 7. Walker LS, Sansom DM. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol 2015;36:63-70.
  • 8. Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Förster R, Pabst O. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 2008;205:2483-2490.
  • 9. Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 2015;348:589-594.
  • 10. Macpherson A, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006;203:497-500.
  • 11. Kunkel D, Kirchhoff D, Nishikawa S, Radbruch A, Scheffold A. Visualization of peptide presentation following oral application of antigen in normal and Peyer’s patches-deficient mice. Eur J Immunol 2003;33:1292-1301.
  • 12. Spahn TW, Weiner HL, Rennert PD, Lügering N, Fontana A, Domschke W, Spahn T.W. Mesenteric lymph nodes are critical for the induction of high dose oral tolerance in the absence of Peyer’s patches. Eur J Immunol 2002;32:1109-1113.
  • 13. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000;191:435-444.
  • 14. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006;203:519-527.
  • 15. Roep B, Tree T. Immune modulation in humans: implications for type 1 diabetes mellitus. Nat Rev Endocrinol 2014;10:229-242.
  • 16. Gale EA, Bingley PJ, Emmett CL, Collier T. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004;363:925-31.
  • 17. Bonifacio E, Ziegler AG, Klingensmith G, Schober E, Bingley PJ, Rottenkolber M. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA. 2015;313:1541-1549.
  • 18. Roep B. Primary prevention for type 1 diabetes mellitus? Nat. Rev. Endocrinology 2015;11:451-452.
  • 19. Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL Zhang J. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 1991;88:10252-10256.
  • 20. Kamyshny A, Putilin D, Kamyshna V. Reduced deaf1 mRNA expression during STZ-induced diabetes mellitus inhibits foxp3+regulatory T-cells differentiations in rat’s pancreatic lymph nodes. Mediterranean J of Biosciences 2015; (1):20-26.
Year 2018, Most Accessed Articles, 27 - 33, 05.06.2018
https://doi.org/10.5455/jicm.20170204

Abstract

References

  • 1. Metzger T, Anderson M. Control of central and peripheral tolerance by Aire. Immunol Rev 2011; 241: 89-103.
  • 2. Kojima H, Fujimiya M, Matsumura K. Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc. Natl. Acad. Sci USA 2004; 101: 2458-2463.
  • 3. Cohen J, Tewalt E, Rouhani S. Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS ONE 2014; 9:e87740.
  • 4. Yip L, Su L, Sheng D. Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat. Immunol. 2009:1026-1033
  • 5. Shevach E, Thornton A. tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 2014;259:88-102.
  • 6. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep 2016;6:24249.
  • 7. Walker LS, Sansom DM. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol 2015;36:63-70.
  • 8. Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Förster R, Pabst O. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med 2008;205:2483-2490.
  • 9. Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 2015;348:589-594.
  • 10. Macpherson A, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med 2006;203:497-500.
  • 11. Kunkel D, Kirchhoff D, Nishikawa S, Radbruch A, Scheffold A. Visualization of peptide presentation following oral application of antigen in normal and Peyer’s patches-deficient mice. Eur J Immunol 2003;33:1292-1301.
  • 12. Spahn TW, Weiner HL, Rennert PD, Lügering N, Fontana A, Domschke W, Spahn T.W. Mesenteric lymph nodes are critical for the induction of high dose oral tolerance in the absence of Peyer’s patches. Eur J Immunol 2002;32:1109-1113.
  • 13. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000;191:435-444.
  • 14. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G, Bernhardt G. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006;203:519-527.
  • 15. Roep B, Tree T. Immune modulation in humans: implications for type 1 diabetes mellitus. Nat Rev Endocrinol 2014;10:229-242.
  • 16. Gale EA, Bingley PJ, Emmett CL, Collier T. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet 2004;363:925-31.
  • 17. Bonifacio E, Ziegler AG, Klingensmith G, Schober E, Bingley PJ, Rottenkolber M. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA. 2015;313:1541-1549.
  • 18. Roep B. Primary prevention for type 1 diabetes mellitus? Nat. Rev. Endocrinology 2015;11:451-452.
  • 19. Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL Zhang J. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci USA 1991;88:10252-10256.
  • 20. Kamyshny A, Putilin D, Kamyshna V. Reduced deaf1 mRNA expression during STZ-induced diabetes mellitus inhibits foxp3+regulatory T-cells differentiations in rat’s pancreatic lymph nodes. Mediterranean J of Biosciences 2015; (1):20-26.
There are 20 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Tanya Prozorova, Et Al.

Publication Date June 5, 2018
Published in Issue Year 2018 Most Accessed Articles

Cite

APA Prozorova, Et Al., T. (2018). Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes. Journal of Immunology and Clinical Microbiology27-33. https://doi.org/10.5455/jicm.20170204
AMA Prozorova, Et Al. T. Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes. J Immunol Clin Microbiol. Published online June 1, 2018:27-33. doi:10.5455/jicm.20170204
Chicago Prozorova, Et Al., Tanya. “Mechanisms of Oral Tolerance to Insulin in Offspring of Rats With Experimental Gestational Diabetes”. Journal of Immunology and Clinical Microbiology, June (June 2018), 27-33. https://doi.org/10.5455/jicm.20170204.
EndNote Prozorova, Et Al. T (June 1, 2018) Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes. Journal of Immunology and Clinical Microbiology 27–33.
IEEE T. Prozorova, Et Al., “Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes”, J Immunol Clin Microbiol, pp. 27–33, June 2018, doi: 10.5455/jicm.20170204.
ISNAD Prozorova, Et Al., Tanya. “Mechanisms of Oral Tolerance to Insulin in Offspring of Rats With Experimental Gestational Diabetes”. Journal of Immunology and Clinical Microbiology. June 2018. 27-33. https://doi.org/10.5455/jicm.20170204.
JAMA Prozorova, Et Al. T. Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes. J Immunol Clin Microbiol. 2018;:27–33.
MLA Prozorova, Et Al., Tanya. “Mechanisms of Oral Tolerance to Insulin in Offspring of Rats With Experimental Gestational Diabetes”. Journal of Immunology and Clinical Microbiology, 2018, pp. 27-33, doi:10.5455/jicm.20170204.
Vancouver Prozorova, Et Al. T. Mechanisms of oral tolerance to insulin in offspring of rats with experimental gestational diabetes. J Immunol Clin Microbiol. 2018:27-33.

88x31.png 

Creative Commons Attribution Non-Commercial License: The articles in the Journal of Immunology and Clinical Microbiology are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

JICM is a product of QMEL® medicine & publishing