Review
BibTex RIS Cite

REAL-TIME (RT-PCR) DETECTION OF MONKEYPOX VİRUS

Year 2022, Volume: 7 Issue: 3, 67 - 73, 30.11.2022

Abstract

Polymerase Chain Reaction (PCR) is in vitro replication of small DNA fragments that allows for accelerated amplification of specific sequences. A sensitive technique, only DNA traces are needed for PCR to produce enough copies to be analyzed. In molecular diagnostic laboratories, RT-PCR technique is applied to find target RNAs for diagnosis of specific pathogens. With this technique, the diagnosis of Monkeypox Virus (MPXV), a double-stranded DNA virus from the zoonotic Poxviridae family, can be achieved. Poxviruses are brick-shaped and surrounded by a lipoprotein envelope with a linear double-stranded DNA genome. Besides host ribosomes for mRNA translation, poxviruses contain all essential replication, transcription, assembly and exit proteins in their genomes. The rRT-PCR method, which has high specificity and moderate sensitivity, can be a great source of hope for MPXV. We believe that when diagnosing MPXV, real-time PCR (RT-PCR) analysis and new RT-PCR studies are needed with newly developed unique rapid tests to determine whether it is sufficient to quickly distinguish similar infections.

References

  • 1. Petersen E, Kantele A, Koopmans M, et al. Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infect Dis Clin North Am. 2019;33(4):1027-1043.
  • 2. Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350(4):342-350.
  • 3. Damon IK, Roth CE, Chowdhary V. Discovery of monkeypox in Sudan. N Engl J Med. 2006;355(9):962-963.
  • 4. Li Y, Olson VA, Laue T, Laker MT, Damon IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol. 2006;36(3):194-203.
  • 5. Kmiec D, Kirchhoff Monkeypox: A New Threat? Int. J. Mol. Sci. 2022; 23(14):7866 6. Kulesh DA, Loveless BM, Norwood D, ve ark. Monkeypox virus detection in rodents using real-time 3’-minor groove binder TaqMan assays on the Roche LightCycler. Lab Invest. 2004;84(9):1200-1208.
  • 7. Erez N, Achdout H, Milrot E, et al. Diagnosis of Imported Monkeypox. Emerg Infect Dis. 2019;25(5):980-983.
  • 8. Yong SEF, Ng OT, Ho ZJM, et al. Imported Monkeypox, Singapore. Emerg Infect Dis. 2020;26(8):1826-1830.
  • 9. Hobson G, Adamson J, Adler H, et al. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdomh. Euro Surveill. 2021;26(32):2100745.
  • 10. Rao AK, Schulte J, Chen TH, ve ark. Monkeypox Response Team. Monkeypox in a Traveler Returning from Nigeria - Dallas, MMWR Morb Mortal Wkly Rep. 2022;71(14):509-516.
  • 11. Costello V, Sowash M, Gaur A, et al. Imported Monkeypox from International Traveler, Maryland. Emerg Infect Dis. 2022;28(5):1002-1005.
  • 12. Mullis K, Faloona F, Scharf S, et al. Spesific enzymatic amplification of DNA in vitro: polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology. 1986;51(1): 263-273.
  • 13. Garcia LT, Cristancho LM, Vera EP, et al. A new multiplex-PCR for urinary tract pathogen detection using primer design based on an evolutionary computation method. J Microbiol Biotechnol. 015;25(10):1714–1727. JICM 2022;7(3):67-73 73 Virüsün RT-PCR ile Saptanması
  • 14. Sreejith KR, Ooi CH, Jin J, et al. Digital polymerase chain reaction tech - nologyrecent advances and future per - spectives. Lab Chip. 2018;18(24):3717–3732.
  • 15. Dixon M, Sha S, Stefil M, et al. Is it Time to Say Goodbye to Culture and Sen - sitivity? The Case for Culture-independent Urology. Urology. 2019;136:112–118.
  • 16. Garibyan L, Avashia N. Research Techniques Made Simple: Polymerase Chain Reac -tion(PCR). J Invest Dermatol. 2013;133(3):1-4.
  • 17. Cilloni D, Petiti J, Rosso V, et al. Digital PCR in myeloid malignancies: Ready to replace quantitative PCR? Int J Mol Sci. 2019;20(9):2249.
  • 18. Kurkela S, Brown DWG. Molecular diag - nostic techniques. Medicine (Baltimore). 2009;37(10):535-540.
  • 19. Quan PL, Sauzade M, Brouzes E. DPCR: A technology review. Sensors (Switzerland). 2018;18(4):1271.
  • 20. Mayer G, Muller J, Lunse CE. RNA diagnostics: real-time RT-PCR strategies and promising novel target RNAs. Wiley Interdiscip. Rev. RNA. 2011;2(1):32-41.
  • 21. Guarner J, Johnson BJ, Paddock CD, et al. Monkeypox transmission and pathogenesis in prairie dogs. Emerg Infect Dis. 2004;10(3):426-431.
  • 22. Alayunt NO. A brief history of RT-PCR and our laboratory experience with SARS-CoV-2 analyses using RT-PCR: RT-PCR and SARSCoV- 2. Jurnal Teknologi Laboratorium. 2022;11(1). early edition. https://doi.org/10.29238/teknolabjournal.v11i1.337
  • 23. Lippi G, Simundic AM., Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19) Clin. Chem. Lab. Med. 2020;58(7):1070- 76.
  • 24. Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 2006;19(1):165-256.
  • 25. Lippi G, Meyer A, Cadamuro J, et al. European Federation of Clinical, P. Laboratory Medicine Working Group for Preanalytical, PREDICT: a checklist for preventing preanalytical diagnostic errors in linical trials, Clin. Chem. Lab Med. 2020;58(4):518–526.
  • 26. Tang YW, Schmitz JE, Persing DH, et al. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020;58(6):e00512-20.
  • 27. Ropp SL, Jin Q, Knight JC, Massung RF, Esposito JJ. PCR strategy for identification and differentiation of small pox and other orthopoxviruses. J Clin Microbiol. 1995;33(8):2069-2076.
  • 28. Esposito JJ, Knight JC. Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology. 1985;143(1):230-251.
  • 29. Robert Koch Institut (RKI). KL für Pockenviren - Präanalytikhandbuch. Berlin: RKI; 2020.Availableat:https://www.rki. de/DE/Content/Infekt/NRZ/Konsiliar/Pockenviren/Praeanalytikhandbuch.pdf. Erişim tarihi 30 Mayıs, 2022.
  • 30. Hussey HS, Abdullahi LH, Collins JE, Muloiwa R, Hussey GD, Kagina BM. Varicella zoster virus-associated morbidity and mortality in Africa: a systematic review protocol. BMJ Open. 2016;6(4):e010213.
  • 31. Osadebe L, Hughes CM, Shongo Lushima R, et al. Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo. PLoS Negl Trop Dis. 2017;11(9):e0005857.
  • 32. McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260-267. 33. C.L. Hutson, K.N. Lee, J. Abel, et al. Regnery Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak Am. J. Trop. Med. Hyg., 2007;76(4):757-768.
  • 34. K.D. Reed, J.W. Melski, M.B. Graham, et al. The detection of monkeypox in humans in the Western Hemisphere N. Engl. J. Med. 2004;350(4):342-350.
  • 35. Kulesh DA, Loveless BM, Norwood D, et al. Monkeypox virus detection in rodents using real-time 3’-minor groove binder TaqMan assays on the Roche LightCycler. Lab Invest. 2004;84(9):1200-1208.
  • 36. Olson VA, Laue T, Laker MT, et al. Real-time PCR system for detection of orthopoxviruses and simultaneous identification of smallpox virus. J Clin Microbiol. 2004;42(5):1940-1946.

MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI

Year 2022, Volume: 7 Issue: 3, 67 - 73, 30.11.2022

Abstract

Polimeraz Zincir Reaksiyonu (PCR), küçük DNA fragmanlarında belirli dizilerin hızlandırılmış amplifikasyonuna izin veren in vitro replikasyonudur. Hassas bir teknik olan PCR’nin, analiz edilecek kadar kopya üretmesi için yalnızca DNA izlerine ihtiyaç vardır. Moleküler tanı laboratuvarlarında, spesifik patojenlerin teşhisi için hedef RNA’ları bulmak için RT-PCR tekniği uygulanır. Bu teknik ile zoonoz olan Poxviridae ailesinden çift sarmallı bir DNA virüsü olan maymun çiçeği virüsü (MPXV) teşhisi sağlanabilir. RT-PCR tekniği ile analiz edilecek MPXV’nin yapısı nispeten büyüktür (200-250 nanometre). Poksvirüsler tuğla şeklindedir ve lineer çift sarmallı DNA genomuna sahip bir lipoprotein zarfı ile çevrilidir. mRNA translasyonu için konakçı ribozomlarının yanı sıra, poksvirüsler genomlarında gerekli tüm replikasyon, transkripsiyon, montaj ve çıkış proteinlerini içerir. Özgüllüğü yüksek ve duyarlılığı orta düzeyde olan rRT-PCR yöntemi MPXV için büyük bir umut kaynağı olabilir. MPXV teşhisi yapılırken real-time PCR (RTPCR) analizinin ve benzer enfeksiyonları hızlı bir şekilde ayırt etmek için yeterli olup olmadığı konusunda yeni geliştirilen benzersiz hızlı testler ile yapılacak yeni analiz yöntemlerine ve yeni RTPCR çalışmalarına ihtiyaç olduğu kanaatindeyiz.

References

  • 1. Petersen E, Kantele A, Koopmans M, et al. Human Monkeypox: Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infect Dis Clin North Am. 2019;33(4):1027-1043.
  • 2. Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med. 2004;350(4):342-350.
  • 3. Damon IK, Roth CE, Chowdhary V. Discovery of monkeypox in Sudan. N Engl J Med. 2006;355(9):962-963.
  • 4. Li Y, Olson VA, Laue T, Laker MT, Damon IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol. 2006;36(3):194-203.
  • 5. Kmiec D, Kirchhoff Monkeypox: A New Threat? Int. J. Mol. Sci. 2022; 23(14):7866 6. Kulesh DA, Loveless BM, Norwood D, ve ark. Monkeypox virus detection in rodents using real-time 3’-minor groove binder TaqMan assays on the Roche LightCycler. Lab Invest. 2004;84(9):1200-1208.
  • 7. Erez N, Achdout H, Milrot E, et al. Diagnosis of Imported Monkeypox. Emerg Infect Dis. 2019;25(5):980-983.
  • 8. Yong SEF, Ng OT, Ho ZJM, et al. Imported Monkeypox, Singapore. Emerg Infect Dis. 2020;26(8):1826-1830.
  • 9. Hobson G, Adamson J, Adler H, et al. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdomh. Euro Surveill. 2021;26(32):2100745.
  • 10. Rao AK, Schulte J, Chen TH, ve ark. Monkeypox Response Team. Monkeypox in a Traveler Returning from Nigeria - Dallas, MMWR Morb Mortal Wkly Rep. 2022;71(14):509-516.
  • 11. Costello V, Sowash M, Gaur A, et al. Imported Monkeypox from International Traveler, Maryland. Emerg Infect Dis. 2022;28(5):1002-1005.
  • 12. Mullis K, Faloona F, Scharf S, et al. Spesific enzymatic amplification of DNA in vitro: polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology. 1986;51(1): 263-273.
  • 13. Garcia LT, Cristancho LM, Vera EP, et al. A new multiplex-PCR for urinary tract pathogen detection using primer design based on an evolutionary computation method. J Microbiol Biotechnol. 015;25(10):1714–1727. JICM 2022;7(3):67-73 73 Virüsün RT-PCR ile Saptanması
  • 14. Sreejith KR, Ooi CH, Jin J, et al. Digital polymerase chain reaction tech - nologyrecent advances and future per - spectives. Lab Chip. 2018;18(24):3717–3732.
  • 15. Dixon M, Sha S, Stefil M, et al. Is it Time to Say Goodbye to Culture and Sen - sitivity? The Case for Culture-independent Urology. Urology. 2019;136:112–118.
  • 16. Garibyan L, Avashia N. Research Techniques Made Simple: Polymerase Chain Reac -tion(PCR). J Invest Dermatol. 2013;133(3):1-4.
  • 17. Cilloni D, Petiti J, Rosso V, et al. Digital PCR in myeloid malignancies: Ready to replace quantitative PCR? Int J Mol Sci. 2019;20(9):2249.
  • 18. Kurkela S, Brown DWG. Molecular diag - nostic techniques. Medicine (Baltimore). 2009;37(10):535-540.
  • 19. Quan PL, Sauzade M, Brouzes E. DPCR: A technology review. Sensors (Switzerland). 2018;18(4):1271.
  • 20. Mayer G, Muller J, Lunse CE. RNA diagnostics: real-time RT-PCR strategies and promising novel target RNAs. Wiley Interdiscip. Rev. RNA. 2011;2(1):32-41.
  • 21. Guarner J, Johnson BJ, Paddock CD, et al. Monkeypox transmission and pathogenesis in prairie dogs. Emerg Infect Dis. 2004;10(3):426-431.
  • 22. Alayunt NO. A brief history of RT-PCR and our laboratory experience with SARS-CoV-2 analyses using RT-PCR: RT-PCR and SARSCoV- 2. Jurnal Teknologi Laboratorium. 2022;11(1). early edition. https://doi.org/10.29238/teknolabjournal.v11i1.337
  • 23. Lippi G, Simundic AM., Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19) Clin. Chem. Lab. Med. 2020;58(7):1070- 76.
  • 24. Espy MJ, Uhl JR, Sloan LM, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 2006;19(1):165-256.
  • 25. Lippi G, Meyer A, Cadamuro J, et al. European Federation of Clinical, P. Laboratory Medicine Working Group for Preanalytical, PREDICT: a checklist for preventing preanalytical diagnostic errors in linical trials, Clin. Chem. Lab Med. 2020;58(4):518–526.
  • 26. Tang YW, Schmitz JE, Persing DH, et al. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020;58(6):e00512-20.
  • 27. Ropp SL, Jin Q, Knight JC, Massung RF, Esposito JJ. PCR strategy for identification and differentiation of small pox and other orthopoxviruses. J Clin Microbiol. 1995;33(8):2069-2076.
  • 28. Esposito JJ, Knight JC. Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology. 1985;143(1):230-251.
  • 29. Robert Koch Institut (RKI). KL für Pockenviren - Präanalytikhandbuch. Berlin: RKI; 2020.Availableat:https://www.rki. de/DE/Content/Infekt/NRZ/Konsiliar/Pockenviren/Praeanalytikhandbuch.pdf. Erişim tarihi 30 Mayıs, 2022.
  • 30. Hussey HS, Abdullahi LH, Collins JE, Muloiwa R, Hussey GD, Kagina BM. Varicella zoster virus-associated morbidity and mortality in Africa: a systematic review protocol. BMJ Open. 2016;6(4):e010213.
  • 31. Osadebe L, Hughes CM, Shongo Lushima R, et al. Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo. PLoS Negl Trop Dis. 2017;11(9):e0005857.
  • 32. McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260-267. 33. C.L. Hutson, K.N. Lee, J. Abel, et al. Regnery Monkeypox zoonotic associations: insights from laboratory evaluation of animals associated with the multi-state US outbreak Am. J. Trop. Med. Hyg., 2007;76(4):757-768.
  • 34. K.D. Reed, J.W. Melski, M.B. Graham, et al. The detection of monkeypox in humans in the Western Hemisphere N. Engl. J. Med. 2004;350(4):342-350.
  • 35. Kulesh DA, Loveless BM, Norwood D, et al. Monkeypox virus detection in rodents using real-time 3’-minor groove binder TaqMan assays on the Roche LightCycler. Lab Invest. 2004;84(9):1200-1208.
  • 36. Olson VA, Laue T, Laker MT, et al. Real-time PCR system for detection of orthopoxviruses and simultaneous identification of smallpox virus. J Clin Microbiol. 2004;42(5):1940-1946.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review Article
Authors

Veysel Tahiroğlu

Naci Ömer Alayunt

Cihat Öztürk 0000-0003-2868-2317

Publication Date November 30, 2022
Published in Issue Year 2022 Volume: 7 Issue: 3

Cite

APA Tahiroğlu, V., Alayunt, N. Ö., & Öztürk, C. (2022). MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI. Journal of Immunology and Clinical Microbiology, 7(3), 67-73.
AMA Tahiroğlu V, Alayunt NÖ, Öztürk C. MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI. J Immunol Clin Microbiol. November 2022;7(3):67-73.
Chicago Tahiroğlu, Veysel, Naci Ömer Alayunt, and Cihat Öztürk. “MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI”. Journal of Immunology and Clinical Microbiology 7, no. 3 (November 2022): 67-73.
EndNote Tahiroğlu V, Alayunt NÖ, Öztürk C (November 1, 2022) MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI. Journal of Immunology and Clinical Microbiology 7 3 67–73.
IEEE V. Tahiroğlu, N. Ö. Alayunt, and C. Öztürk, “MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI”, J Immunol Clin Microbiol, vol. 7, no. 3, pp. 67–73, 2022.
ISNAD Tahiroğlu, Veysel et al. “MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI”. Journal of Immunology and Clinical Microbiology 7/3 (November 2022), 67-73.
JAMA Tahiroğlu V, Alayunt NÖ, Öztürk C. MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI. J Immunol Clin Microbiol. 2022;7:67–73.
MLA Tahiroğlu, Veysel et al. “MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI”. Journal of Immunology and Clinical Microbiology, vol. 7, no. 3, 2022, pp. 67-73.
Vancouver Tahiroğlu V, Alayunt NÖ, Öztürk C. MAYMUN ÇİÇEĞİ VİRÜSÜ’NÜN REAL TİME (RT-PCR) İLE SAPTANMASI. J Immunol Clin Microbiol. 2022;7(3):67-73.

88x31.png 

Creative Commons Attribution Non-Commercial License: The articles in the Journal of Immunology and Clinical Microbiology are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

JICM is a product of QMEL® medicine & publishing