Research Article
BibTex RIS Cite

Prediction of high-risk human papillomavirus after conization by machine learning methods

Year 2025, Volume: 10 Issue: 1, 11 - 22, 13.06.2025
https://doi.org/10.58854/jicm.1609786

Abstract

Objectives
This study aimed to use machine learning, a branch of artificial intelligence, to predict the persistence of high-risk HPV in women who have undergone conization surgery.
Materials and Methods: This retrospective study was conducted between 2018 and 2023 in the Gynecology and Obstetrics Clinic of Balıkesir University Health Practice and Research Hospital. A dataset of 69 female patients between the ages of 23-67 years; for the prediction of HPV status 1 year after the conization operation, the patients' data were recorded according to the criteria we determined, and these data were analyzed and classified using machine learning methods. Various Machine Learning methods such as Gradient Boosting, Support Vector Machine (SVM), Catboost, Random Forest (RF), and Naive Bayes (NB) are used here.
Results: We found the highest accuracy rate in Random Forest, and Catboost with 76 %. Gradient Boosting followed with a score of 67%, and Naive Bayes and Support Vector Machine (SVM) performed considerably lower, with scores of 48% and 43%, respectively.
Conclusions: Our results show that machine learning, a novel use of artificial intelligence, is effective in predicting the persistence of high-risk HPV. Further studies with more data will be a promising and useful tool for HPV and cervical cancer screening in the future.

References

  • 1. Villiers E.M.; Fauquet C.; Broker T.R.; Bernard H.U.; zur Hausen H. Classification of papillomaviruses. Virology. 2004, 324(1), 17-27.
  • 2. Coser J.; Boeira T.R.; Wolf J.M.; Cerbaro K.; Simon D.; Lunge V.R. Cervical human papillomavirus infection and persistence: a clinic-based study in the countryside from South Brazil. Braz J Infect Dis. 2016, 20(1), 61-68.
  • 3. Tumban E. A current update on human papillomavirus-associated head and neck cancers. Viruses. 2019, 11(10), 922.
  • 4. Cuzick J.; Cuschieri K.; Denton K.; Hopkins M.; Thorat M.A.; Wright C.; Cubie H.; Moore C.; Kleeman M.; Austin J.; et al. Performance of the Xpert HPV assay in women attending for cervical screening. Papillomavirus Res. 2015, 1, 32-37.
  • 5. Sung H.; Ferlay J.; Siegel R.L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global Cancer Statistics 2020: GLO-BOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71(3), 209-249.
  • 6. Okunade K.S. Human papillomavirus and cervical cancer. J Obstet Gynaecol. 2020, 40(5), 602-608.
  • 7. Parkin D.M.; Bray F. The burden of HPV-related cancers. In HPV Vaccines and Screening in the Prevention of Cervical Cancer; Bosch F.X., Cuzick J., Schiller J.T., Garnett G.P., Meheus A., Franco E.L., Wright T.C., Eds.; Vaccine: Amsterdam, Holland, 2006; Volume 24S3, pp. S3/11-S3/25.
  • 8. Rossi P.G.; Ricciardi A., Cohet C.; Palazzo F; Furnari1 G; Valle S; Largeron N; Federici A. Epidemiology and costs of cervical cancer screening and cervical dysplasia in Italy. BMC Public Health. 2009, 9(1), 71.
  • 9. Nyári T.A; Kalmár L; Deák J; Szõllõsi J, Farkas I, Kovács L. Prevalence and risk factors of human papilloma virus infection in asymptomatic women in southeastern Hungary. Eur J Obstet Gynecol Reprod Biol. 2004, 115(1), 99-100.
  • 10. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006, 110(5), 525-541.
  • 11. Ulusal Kanser Danışma Kurulu ETvTAKR, T.
  • 12. Aydogan Kirmizi D, Baser E, Demir Caltekin M, Onat T, Sahin S, Yalvac ES. Concordance of HPV , conventional smear, colposcopy, and conization results in cervical dysplasia. Diagn Cytopathol. Ocak 2021;49(1):132-9.
  • 13. Basu P, Taghavi K, Hu SY, Mogri S, Joshi S. Management of cervical premalignant lesions. Curr Probl Cancer. 2018 Mar-Apr;42(2):129-136. doi: 10.1016/j.currproblcancer.2018.01.010. Epub 2018 Jan 11. PMID: 29428790
  • 14. Shah A.; Shah M.; Pandya A.; Sushra R.; Sushra R.; Mehta M.; Patel K.; Patel K. A comprehensive study on skin cancer detec-tion using artificial neural network (ANN) and convolutional neural network (CNN). Clinical eHealth. 2023, 6, 76-84.
  • 15. Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Predictive analytics with gradient boosting in clinical medicine. Ann Transl Med. 2019 Apr;7(7):152. doi: 10.21037/atm.2019.03.29. PMID: 31157273; PMCID: PMC6511546.)
  • 16. (Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary review. J Big Data. 2020;7(1):94. doi: 10.1186/s40537-020-00369-8. Epub 2020 Nov 4. PMID: 33169094; PMCID: PMC7610170.)
  • 17. Cui L.; Zhang Q.; Shi Y.; Yang L.; Wang Y.; Wang J.; Bai C. A method for satellite time series anomaly detection based on fast-DTW and improved-KNN. Chin J Aeronaut. 2023, 36, 149-159.
  • 18. Maheswari S, Pitchai R. Heart Disease Prediction System Using Decision Tree and Naive Bayes Algorithm. Curr Med Imaging Rev. 2019;15(8):712-7.
  • 19. Rashed A.E.E.; Elmorsy A.M.; Atwa A.E.M. Comparative evaluation of automated machine learning techniques for breast cancer diagnosis. Biomed Signal Process Control. 2023, 86, 105016.
  • 20. Qian L.; Bai J.; Huang Y.; Zeebaree D.Q.; Saffari A.; Zebari D.A. Breast cancer diagnosis using evolving deep convolutional neural network based on hybrid extreme learning machine technique and improved chimp optimization algorithm. Biomed Signal Process Control. 2024, 87, 105492.
  • 21. Navazi F.; Yuan Y.; Archer N. An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Anal. 2023, 4, 100227.
  • 22. Xue P.; Tang C.; Li Q.; Li Y.; Shen Y.; Zhao Y.; Chen J.; Wu J.; Li L.; Wang W.; et al. Development and validation of an artificial intelligence system for grading colposcopic impressions and guiding biopsies. BMC Med. 2020, 18(1), 406.
  • 23. Xue P.; Xu H.M.; Tang H.P.; Wu W.Q.; Seery S.; Han X.; Ye H.; Jiang Y.; Qiao Y.L. Assessing artificial intelligence enabled liq-uid-based cytology for triaging HPV-positive women: a population-based cross-sectional study. Acta Obstet Gynecol Scand. 2023, 102(8), 1026-1033.
  • 24. Tan X.; Li K.; Zhang J.; Wang W.; Wu B.; Wu J.; Li X., Huang X. Automatic model for cervical cancer screening based on con-volutional neural network: a retrospective, multicohort, multicenter study. Cancer Cell International. 2021, 21, 35.
  • 25. Ali M.M.; Ahmed K; Bui F.M.; Paul B.K.; Ibrahim S.M.; Quinn J.M.W.; Moni M.A. Machine learning-based statistical analysis for early stage detection of cervical cancer. Comput Biol Med. 2021, 139, 104985.
  • 26. Fusco E.; Padula F.; Mancini E.; Cavaliere A.; Grubisic G. History of colposcopy: a brief biography of Hinselmann. J Prenat Med. 2008, 2, 19-23.
  • 27. Gecer M.; High-risk Human Papillomavirus (hrHPV) Prevalence and Genotype Distribution among Turkish Women. J Cytol. 2023, 40, 42-48
  • 28. Stuebs, F.A.; Dietl, A.K.; Behrens, A.; Adler, W.; Geppert, C.; Hartmann, A.; Knöll, A.; Beckmann, M.W.; Mehlhorn, G.; Schulmeyer, C.E.; et al. Concordance Rate of Colposcopy in Detecting Cervical Intraepithelial Lesions. Diagnostics. 2022, 12, 2436
  • 29. Guan P, Howell-Jones R, Li N, Bruni L, de Sanjosé S, Franceschi S, vd. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 15 Kasım 2012;131(10):2349-59.
  • 30. Zang L, Hu Y. Risk factors associated with HPV persistence after conization in high-grade squamous intraepithelial lesion. Arch Gynecol Obstet. Aralık 2021;304(6):1409-16.
  • 31. Hou X.; Shen G.; Zhou L.; Li Y.; Wang T.; Ma X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front On-col. 2022, 12 ,851367.
  • 32. Bumrungthai, S.; Ekalaksananan, T.; Kleebkaow, P.; Pongsawatkul, K.; Phatnithikul, P.; Jaikan, J.; Raumsuk, P.; Duangjit, S.; Chuenchai, D.; Pientong, C. Mathematical Modelling of Cervical Precancerous Lesion Grade Risk Scores: Linear Regression Analysis of Cellular Protein Biomarkers and Human Papillomavirus E6/E7 RNA Staining Patterns. Diagnostics. 2023, 13, 1084.
  • 33. Lilhore U.K.; Poongodi M.; Kaur A.; Simaiya S.; Algarni A.D.; Elmannai H.; Vijayakumar V.; Tunze G.B.; Hamdi M. Hybrid model for detection of cervical cancer using causal analysis and machine learning techniques. Comput Math Methods Med. 2022, 2022, 4688327.

Konizasyon sonrası yüksek riskli insan papilloma virüsünün makine öğrenmesi yöntemleriyle tahmini

Year 2025, Volume: 10 Issue: 1, 11 - 22, 13.06.2025
https://doi.org/10.58854/jicm.1609786

Abstract

Amaç: Bu çalışma, konizasyon ameliyatı geçiren kadınlarda yüksek riskli HPV'nin kalıcılığını tahmin etmek için yapay zekanın bir dalı olan makine öğrenimini kullanmayı amaçladı.
Gereç ve Yöntem: Bu retrospektif çalışma 2018-2023 yılları arasında Balıkesir Üniversitesi Sağlık Uygulama ve Araştırma Hastanesi Kadın Hastalıkları ve Doğum Kliniğinde gerçekleştirildi. 23-67 yaş arası 69 kadın hastadan oluşan veri seti; Konizasyon operasyonundan 1 yıl sonra HPV durumunun tahmini için hastaların verileri belirlediğimiz kriterlere göre kayıt altına alındı ​​ve bu veriler makine öğrenmesi yöntemleri kullanılarak analiz edildi ve sınıflandırıldı. Burada Gradient Boosting, Support Vector Machine (SVM), Catboost, Random Forest (RF) ve Naive Bayes (NB) gibi çeşitli Makine Öğrenimi yöntemleri kullanılmaktadır.
Bulgular: En yüksek doğruluk oranını %76 ile Random Forest ve Catboost'ta bulduk. Bunu %67 puanla Gradient Boosting takip ederken, Naive Bayes ve Support Vector Machine (SVM) sırasıyla %48 ve %43 puanlarla oldukça düşük performans gösterdi.
Sonuçlar: Sonuçlarımız, yapay zekanın yeni bir kullanımı olan makine öğreniminin, yüksek riskli HPV'nin kalıcılığını tahmin etmede etkili olduğunu göstermektedir. Daha fazla veri içeren ileri çalışmalar gelecekte HPV ve rahim ağzı kanseri taraması için umut verici ve faydalı bir araç olacaktır.

References

  • 1. Villiers E.M.; Fauquet C.; Broker T.R.; Bernard H.U.; zur Hausen H. Classification of papillomaviruses. Virology. 2004, 324(1), 17-27.
  • 2. Coser J.; Boeira T.R.; Wolf J.M.; Cerbaro K.; Simon D.; Lunge V.R. Cervical human papillomavirus infection and persistence: a clinic-based study in the countryside from South Brazil. Braz J Infect Dis. 2016, 20(1), 61-68.
  • 3. Tumban E. A current update on human papillomavirus-associated head and neck cancers. Viruses. 2019, 11(10), 922.
  • 4. Cuzick J.; Cuschieri K.; Denton K.; Hopkins M.; Thorat M.A.; Wright C.; Cubie H.; Moore C.; Kleeman M.; Austin J.; et al. Performance of the Xpert HPV assay in women attending for cervical screening. Papillomavirus Res. 2015, 1, 32-37.
  • 5. Sung H.; Ferlay J.; Siegel R.L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global Cancer Statistics 2020: GLO-BOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71(3), 209-249.
  • 6. Okunade K.S. Human papillomavirus and cervical cancer. J Obstet Gynaecol. 2020, 40(5), 602-608.
  • 7. Parkin D.M.; Bray F. The burden of HPV-related cancers. In HPV Vaccines and Screening in the Prevention of Cervical Cancer; Bosch F.X., Cuzick J., Schiller J.T., Garnett G.P., Meheus A., Franco E.L., Wright T.C., Eds.; Vaccine: Amsterdam, Holland, 2006; Volume 24S3, pp. S3/11-S3/25.
  • 8. Rossi P.G.; Ricciardi A., Cohet C.; Palazzo F; Furnari1 G; Valle S; Largeron N; Federici A. Epidemiology and costs of cervical cancer screening and cervical dysplasia in Italy. BMC Public Health. 2009, 9(1), 71.
  • 9. Nyári T.A; Kalmár L; Deák J; Szõllõsi J, Farkas I, Kovács L. Prevalence and risk factors of human papilloma virus infection in asymptomatic women in southeastern Hungary. Eur J Obstet Gynecol Reprod Biol. 2004, 115(1), 99-100.
  • 10. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006, 110(5), 525-541.
  • 11. Ulusal Kanser Danışma Kurulu ETvTAKR, T.
  • 12. Aydogan Kirmizi D, Baser E, Demir Caltekin M, Onat T, Sahin S, Yalvac ES. Concordance of HPV , conventional smear, colposcopy, and conization results in cervical dysplasia. Diagn Cytopathol. Ocak 2021;49(1):132-9.
  • 13. Basu P, Taghavi K, Hu SY, Mogri S, Joshi S. Management of cervical premalignant lesions. Curr Probl Cancer. 2018 Mar-Apr;42(2):129-136. doi: 10.1016/j.currproblcancer.2018.01.010. Epub 2018 Jan 11. PMID: 29428790
  • 14. Shah A.; Shah M.; Pandya A.; Sushra R.; Sushra R.; Mehta M.; Patel K.; Patel K. A comprehensive study on skin cancer detec-tion using artificial neural network (ANN) and convolutional neural network (CNN). Clinical eHealth. 2023, 6, 76-84.
  • 15. Zhang Z, Zhao Y, Canes A, Steinberg D, Lyashevska O; written on behalf of AME Big-Data Clinical Trial Collaborative Group. Predictive analytics with gradient boosting in clinical medicine. Ann Transl Med. 2019 Apr;7(7):152. doi: 10.21037/atm.2019.03.29. PMID: 31157273; PMCID: PMC6511546.)
  • 16. (Hancock JT, Khoshgoftaar TM. CatBoost for big data: an interdisciplinary review. J Big Data. 2020;7(1):94. doi: 10.1186/s40537-020-00369-8. Epub 2020 Nov 4. PMID: 33169094; PMCID: PMC7610170.)
  • 17. Cui L.; Zhang Q.; Shi Y.; Yang L.; Wang Y.; Wang J.; Bai C. A method for satellite time series anomaly detection based on fast-DTW and improved-KNN. Chin J Aeronaut. 2023, 36, 149-159.
  • 18. Maheswari S, Pitchai R. Heart Disease Prediction System Using Decision Tree and Naive Bayes Algorithm. Curr Med Imaging Rev. 2019;15(8):712-7.
  • 19. Rashed A.E.E.; Elmorsy A.M.; Atwa A.E.M. Comparative evaluation of automated machine learning techniques for breast cancer diagnosis. Biomed Signal Process Control. 2023, 86, 105016.
  • 20. Qian L.; Bai J.; Huang Y.; Zeebaree D.Q.; Saffari A.; Zebari D.A. Breast cancer diagnosis using evolving deep convolutional neural network based on hybrid extreme learning machine technique and improved chimp optimization algorithm. Biomed Signal Process Control. 2024, 87, 105492.
  • 21. Navazi F.; Yuan Y.; Archer N. An examination of the hybrid meta-heuristic machine learning algorithms for early diagnosis of type II diabetes using big data feature selection. Healthcare Anal. 2023, 4, 100227.
  • 22. Xue P.; Tang C.; Li Q.; Li Y.; Shen Y.; Zhao Y.; Chen J.; Wu J.; Li L.; Wang W.; et al. Development and validation of an artificial intelligence system for grading colposcopic impressions and guiding biopsies. BMC Med. 2020, 18(1), 406.
  • 23. Xue P.; Xu H.M.; Tang H.P.; Wu W.Q.; Seery S.; Han X.; Ye H.; Jiang Y.; Qiao Y.L. Assessing artificial intelligence enabled liq-uid-based cytology for triaging HPV-positive women: a population-based cross-sectional study. Acta Obstet Gynecol Scand. 2023, 102(8), 1026-1033.
  • 24. Tan X.; Li K.; Zhang J.; Wang W.; Wu B.; Wu J.; Li X., Huang X. Automatic model for cervical cancer screening based on con-volutional neural network: a retrospective, multicohort, multicenter study. Cancer Cell International. 2021, 21, 35.
  • 25. Ali M.M.; Ahmed K; Bui F.M.; Paul B.K.; Ibrahim S.M.; Quinn J.M.W.; Moni M.A. Machine learning-based statistical analysis for early stage detection of cervical cancer. Comput Biol Med. 2021, 139, 104985.
  • 26. Fusco E.; Padula F.; Mancini E.; Cavaliere A.; Grubisic G. History of colposcopy: a brief biography of Hinselmann. J Prenat Med. 2008, 2, 19-23.
  • 27. Gecer M.; High-risk Human Papillomavirus (hrHPV) Prevalence and Genotype Distribution among Turkish Women. J Cytol. 2023, 40, 42-48
  • 28. Stuebs, F.A.; Dietl, A.K.; Behrens, A.; Adler, W.; Geppert, C.; Hartmann, A.; Knöll, A.; Beckmann, M.W.; Mehlhorn, G.; Schulmeyer, C.E.; et al. Concordance Rate of Colposcopy in Detecting Cervical Intraepithelial Lesions. Diagnostics. 2022, 12, 2436
  • 29. Guan P, Howell-Jones R, Li N, Bruni L, de Sanjosé S, Franceschi S, vd. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. Int J Cancer. 15 Kasım 2012;131(10):2349-59.
  • 30. Zang L, Hu Y. Risk factors associated with HPV persistence after conization in high-grade squamous intraepithelial lesion. Arch Gynecol Obstet. Aralık 2021;304(6):1409-16.
  • 31. Hou X.; Shen G.; Zhou L.; Li Y.; Wang T.; Ma X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front On-col. 2022, 12 ,851367.
  • 32. Bumrungthai, S.; Ekalaksananan, T.; Kleebkaow, P.; Pongsawatkul, K.; Phatnithikul, P.; Jaikan, J.; Raumsuk, P.; Duangjit, S.; Chuenchai, D.; Pientong, C. Mathematical Modelling of Cervical Precancerous Lesion Grade Risk Scores: Linear Regression Analysis of Cellular Protein Biomarkers and Human Papillomavirus E6/E7 RNA Staining Patterns. Diagnostics. 2023, 13, 1084.
  • 33. Lilhore U.K.; Poongodi M.; Kaur A.; Simaiya S.; Algarni A.D.; Elmannai H.; Vijayakumar V.; Tunze G.B.; Hamdi M. Hybrid model for detection of cervical cancer using causal analysis and machine learning techniques. Comput Math Methods Med. 2022, 2022, 4688327.
There are 33 citations in total.

Details

Primary Language English
Subjects Immunology (Other)
Journal Section Research Articles
Authors

Erol Özçekiç

Duygu Lafcı

Akın Usta

Orkun Çetin

Yener Özel

Gökberk Kozak

Publication Date June 13, 2025
Submission Date January 13, 2025
Acceptance Date May 12, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Özçekiç, E., Lafcı, D., Usta, A., … Çetin, O. (2025). Prediction of high-risk human papillomavirus after conization by machine learning methods. Journal of Immunology and Clinical Microbiology, 10(1), 11-22. https://doi.org/10.58854/jicm.1609786
AMA Özçekiç E, Lafcı D, Usta A, Çetin O, Özel Y, Kozak G. Prediction of high-risk human papillomavirus after conization by machine learning methods. J Immunol Clin Microbiol. June 2025;10(1):11-22. doi:10.58854/jicm.1609786
Chicago Özçekiç, Erol, Duygu Lafcı, Akın Usta, Orkun Çetin, Yener Özel, and Gökberk Kozak. “Prediction of High-Risk Human Papillomavirus After Conization by Machine Learning Methods”. Journal of Immunology and Clinical Microbiology 10, no. 1 (June 2025): 11-22. https://doi.org/10.58854/jicm.1609786.
EndNote Özçekiç E, Lafcı D, Usta A, Çetin O, Özel Y, Kozak G (June 1, 2025) Prediction of high-risk human papillomavirus after conization by machine learning methods. Journal of Immunology and Clinical Microbiology 10 1 11–22.
IEEE E. Özçekiç, D. Lafcı, A. Usta, O. Çetin, Y. Özel, and G. Kozak, “Prediction of high-risk human papillomavirus after conization by machine learning methods”, J Immunol Clin Microbiol, vol. 10, no. 1, pp. 11–22, 2025, doi: 10.58854/jicm.1609786.
ISNAD Özçekiç, Erol et al. “Prediction of High-Risk Human Papillomavirus After Conization by Machine Learning Methods”. Journal of Immunology and Clinical Microbiology 10/1 (June2025), 11-22. https://doi.org/10.58854/jicm.1609786.
JAMA Özçekiç E, Lafcı D, Usta A, Çetin O, Özel Y, Kozak G. Prediction of high-risk human papillomavirus after conization by machine learning methods. J Immunol Clin Microbiol. 2025;10:11–22.
MLA Özçekiç, Erol et al. “Prediction of High-Risk Human Papillomavirus After Conization by Machine Learning Methods”. Journal of Immunology and Clinical Microbiology, vol. 10, no. 1, 2025, pp. 11-22, doi:10.58854/jicm.1609786.
Vancouver Özçekiç E, Lafcı D, Usta A, Çetin O, Özel Y, Kozak G. Prediction of high-risk human papillomavirus after conization by machine learning methods. J Immunol Clin Microbiol. 2025;10(1):11-22.

88x31.png 

Creative Commons Attribution Non-Commercial License: The articles in the Journal of Immunology and Clinical Microbiology are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

JICM is a product of QMEL® medicine & publishing