Research Article
BibTex RIS Cite

Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova

Year 2017, Volume: 12 Issue: 1, 82 - 89, 30.03.2017

Abstract

Wastewater
treatment is fundamental to preserve the environment and to protect public
health, both in urban and rural areas. Poorly treated wastewater with high
levels of pollutants creates major environmental problems when discharged to
surface water or land. The present study aimed to evaluate performance
efficiency of Wastewater Treatment Plant (WWTP) in Skenderaj, Kosova, to assess
the effluent and its suitability for discharge into river. Influent and
effluent wastewater samples were collected during April 2016 to June 2016.
Physico-chemical parameters analysed for evaluation of performance of WWTP were
temperature, pH, dissolved oxygen, conductivity, total dissolved solids (TDS),
total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen
demand (COD), PO4-P and N-total. The BOD5, TSS and COD removal efficiency of
WWTP in Skenderaj were 98.47%, 78.66% and 32.64 % respectively. The values of
temperature, pH, dissolved oxygen, conductivity, TDS, TSS, BOD5, COD, PO4/P and
N-total for the final effluent produced from Skenderaj WWTP meet the values
determined by the European Union (EU), World Health Organization (WHO)
Standards.

References

  • APHA, (2005) Standard Methods for Examination of Water and Wastewater, 21st Edition, American Public Health Association, Washington, D.C. Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H, (2010) Sick Water? The Central Role of Wastewater Management in Sustainable Development, UN-HABITAT/UNEP/ Grid- arendal, The Hague. Delzer GC, McKenzie SW, (2003) Five-day biochemical oxygen demand, U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, chap. A7 (3rd Ed.), section 7. European Union, (1991) Council Directive 91/271/EEC concerning urban waste water treatment. European Commission, Brussels.
  • Hach CC, Klein RL, Gibbs ChR, (1997) Introduction to Biochemical Oxygen Demand, Technical Information Series-Booklet No. 7. Horan NJ, (1990) Biological Wastewater Treatment System, John Wilet & sons Ltd. England.
  • Koch M, Yediler A, Lienert D, Insel G, Kettrup A, (2002) Ozonation of hydrolyzed azo dye reactive yellow 84 (CI).Chemosphere, 46, 109-113.
  • Mantzavinos D, Livingston AG, Hellenbrand R, Metcalfe IS, (1996) Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Water Research, 51, 4219-4235.
  • Metcalf & Eddy I, (2004) Wastewater Engineering, Treatment and Reuse. 4 ed. New York: McGraw- Hill.
  • Qadir M, Wichelns D, Raschid SI, McCornik PG, Drechsel P, Bahri A, Minhas PS, (2009) The Challenges of Wastewater Irrigation in Developing Countries, Agricultural Water Management, 97, 561-568.
  • Rao PV, (2005) Textbook of environmental engineering. Eastern Economy Ed., Prentice-Hall of India Private Limited, New Delhi, Chapter 3, 280.
  • Sawyer C, McCarty P, (2002) Chemistry for Environmental Engineering. New York, New York: McGraw Hill.
  • Tchobanoglous G, Schroeder ED, (1999) Water Quality Characteristics, Modeling and Modification, ADDISON-WESLEY Publishing Company.
  • Tchobanologous G, Burton FL, Stensel HD, (2003) Wastewater Engineering Treatment and Reuse, 4th Edition, McGraw Hill, Boston, U.S.A.
  • Templeton MR, Botler D, (2011) Introduction to Wastewater Treatment.
  • Tjandraatmadja G, Pollard Ch, (2006) Literature review: Sources of critical Contaminants in domestic wastewater, National science agency, CSIRO, Australia.
  • WHO, (2006) Guideline for drinking water quality. World Health Organization, 3rd Ed., Vol. 1, Recommendations, Geneva, Switzerland. WHO, (2006) Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture, Report of WHO Scientific Group, Geneva.
Year 2017, Volume: 12 Issue: 1, 82 - 89, 30.03.2017

Abstract

References

  • APHA, (2005) Standard Methods for Examination of Water and Wastewater, 21st Edition, American Public Health Association, Washington, D.C. Corcoran E, Nellemann C, Baker E, Bos R, Osborn D, Savelli H, (2010) Sick Water? The Central Role of Wastewater Management in Sustainable Development, UN-HABITAT/UNEP/ Grid- arendal, The Hague. Delzer GC, McKenzie SW, (2003) Five-day biochemical oxygen demand, U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, chap. A7 (3rd Ed.), section 7. European Union, (1991) Council Directive 91/271/EEC concerning urban waste water treatment. European Commission, Brussels.
  • Hach CC, Klein RL, Gibbs ChR, (1997) Introduction to Biochemical Oxygen Demand, Technical Information Series-Booklet No. 7. Horan NJ, (1990) Biological Wastewater Treatment System, John Wilet & sons Ltd. England.
  • Koch M, Yediler A, Lienert D, Insel G, Kettrup A, (2002) Ozonation of hydrolyzed azo dye reactive yellow 84 (CI).Chemosphere, 46, 109-113.
  • Mantzavinos D, Livingston AG, Hellenbrand R, Metcalfe IS, (1996) Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment. Water Research, 51, 4219-4235.
  • Metcalf & Eddy I, (2004) Wastewater Engineering, Treatment and Reuse. 4 ed. New York: McGraw- Hill.
  • Qadir M, Wichelns D, Raschid SI, McCornik PG, Drechsel P, Bahri A, Minhas PS, (2009) The Challenges of Wastewater Irrigation in Developing Countries, Agricultural Water Management, 97, 561-568.
  • Rao PV, (2005) Textbook of environmental engineering. Eastern Economy Ed., Prentice-Hall of India Private Limited, New Delhi, Chapter 3, 280.
  • Sawyer C, McCarty P, (2002) Chemistry for Environmental Engineering. New York, New York: McGraw Hill.
  • Tchobanoglous G, Schroeder ED, (1999) Water Quality Characteristics, Modeling and Modification, ADDISON-WESLEY Publishing Company.
  • Tchobanologous G, Burton FL, Stensel HD, (2003) Wastewater Engineering Treatment and Reuse, 4th Edition, McGraw Hill, Boston, U.S.A.
  • Templeton MR, Botler D, (2011) Introduction to Wastewater Treatment.
  • Tjandraatmadja G, Pollard Ch, (2006) Literature review: Sources of critical Contaminants in domestic wastewater, National science agency, CSIRO, Australia.
  • WHO, (2006) Guideline for drinking water quality. World Health Organization, 3rd Ed., Vol. 1, Recommendations, Geneva, Switzerland. WHO, (2006) Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture, Report of WHO Scientific Group, Geneva.
There are 13 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Nushe Lajçi

Beqir Vojvoda This is me

Blerim Baruti This is me

Ali Sadiku This is me

Florent Dobroshi This is me

Publication Date March 30, 2017
Acceptance Date March 16, 2017
Published in Issue Year 2017 Volume: 12 Issue: 1

Cite

APA Lajçi, N., Vojvoda, B., Baruti, B., Sadiku, A., et al. (2017). Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova. Journal of International Environmental Application and Science, 12(1), 82-89.
AMA Lajçi N, Vojvoda B, Baruti B, Sadiku A, Dobroshi F. Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova. J. Int. Environmental Application & Science. March 2017;12(1):82-89.
Chicago Lajçi, Nushe, Beqir Vojvoda, Blerim Baruti, Ali Sadiku, and Florent Dobroshi. “Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova”. Journal of International Environmental Application and Science 12, no. 1 (March 2017): 82-89.
EndNote Lajçi N, Vojvoda B, Baruti B, Sadiku A, Dobroshi F (March 1, 2017) Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova. Journal of International Environmental Application and Science 12 1 82–89.
IEEE N. Lajçi, B. Vojvoda, B. Baruti, A. Sadiku, and F. Dobroshi, “Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova”, J. Int. Environmental Application & Science, vol. 12, no. 1, pp. 82–89, 2017.
ISNAD Lajçi, Nushe et al. “Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova”. Journal of International Environmental Application and Science 12/1 (March 2017), 82-89.
JAMA Lajçi N, Vojvoda B, Baruti B, Sadiku A, Dobroshi F. Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova. J. Int. Environmental Application & Science. 2017;12:82–89.
MLA Lajçi, Nushe et al. “Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova”. Journal of International Environmental Application and Science, vol. 12, no. 1, 2017, pp. 82-89.
Vancouver Lajçi N, Vojvoda B, Baruti B, Sadiku A, Dobroshi F. Performance Evaluation of Skenderaj Wastewater Treatment Plant, Kosova. J. Int. Environmental Application & Science. 2017;12(1):82-9.

“Journal of International Environmental Application and Science”