Research Article
BibTex RIS Cite

Eğik eğilme altında dikdörtgen içi boş kesitlerin optimal kesit boyutlarının belirlenmesi: analitik ve sayısal çalışma

Year 2024, , 198 - 219, 31.01.2024
https://doi.org/10.61112/jiens.1383887

Abstract

Çok sayıda uygulama alanında yaygın olarak bulunmasına rağmen, eğik eğilmeye maruz kalan dikdörtgen içi boş kesitli (DBK) elemanların optimal kesit boyutlarını belirleyen analitik prosedürlerin geliştirilmesine yönelik az sayıda titiz çalışma yapılmıştır. Buna yanıt olarak, mukavemet gerekliliklerinden ödün vermeden malzeme maliyetlerini azaltmak amacıyla, uygulanan eğik eğilme momentinin neden olduğu DBK'deki maksimum etkili gerilimi en aza indirme konseptine dayalı bir analitik prosedür geliştirilmiştir. Bu çalışmada ele alınan DBK elemanlarının, farklı kesit alanı çıkarma oranlarında dikdörtgen katı kesitlerin içinin boşaltılmasıyla üretildiği varsayılmıştır; bu nedenle tasarım değişkenleri olarak yalnızca DBK elemanlarının duvar kalınlıkları dikkate alınmıştır. Maksimum efektif gerilmenin en aza indirilmesi, kesit tasarım değişkenleri arasında fonksiyonel bir korelasyon kurulmasıyla sağlanmıştır. Önerilen prosedür, verilen farklı kesit alanı çıkarma oranları için en uygun kesit boyutlarının belirlenmesine ve dolayısıyla malzemelerin uygun maliyetli kullanımına olanak sağlamaktadır. Ayrıntılı matematiksel hesaplamalardan sonra, elde edilen analitik ifadeler, gerçek tasarım uygulamalarında kullanılmak üzere basit matematik formlarında pratik mühendisliğe sunulmuştur. Analitik prosedür, Abaqus mühendislik yazılımında gerçekleştirilen sonlu elemanlar analizlerinden elde edilen sayısal sonuçlara göre doğrulanmıştır.

References

  • Chavan V, Nimbalkar V, Jaiswal A (2007) Economic Evaluation of Open and Hollow Structural Sections in Industrial Trusses. Int J Innov Res Sci Eng Technol 3297:2319–8753
  • Mendoza JMG, Montes SA, Lomelí JJ, Campos JAF (2017) Size optimization of rectangular cross section members subject to fatigue constraints. J Theor Appl Mech 55:547–557
  • Wardenier J, Packer JA, Zhao X-L, Van der Vegte GJ (2002) Hollow sections in structural applications. Bouwen met staal Rotterdam,, The Netherlands
  • Dundar MA, Nuraliyev M, Sahin DE (2022) Determination of Optimal Dimensions of Polymer-Based Rectangular Hollow Sections Based on Both Adequate-Strength and Local Buckling Criteria: Analytical and Numerical Study. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2022.2139720
  • Shigley JE, Mitchell LD, Saunders H (1985) Mechanical engineering design
  • Wardenier J, Dutta D, Yeomans N (1995) Design guide for structural hollow sections in mechanical applications. Verlag TÜV Rheinland
  • Weaver PM, Ashby MF (1996) The Optimal Selection of Material and Section-shape. J Eng Des 7(2):129–150. https://doi.org/10.1080/09544829608907932
  • Deshpande VS, Fleck NA (2001) Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct 38(36):6275–6305. https://doi.org/https://doi.org/10.1016/S0020-7683(01)00103-2
  • Wicks N, Hutchinson JW (2001) Optimal truss plates. Int J Solids Struct 38(30):5165–5183. https://doi.org/https://doi.org/10.1016/S0020-7683(00)00315-2
  • Ashby M, Evans A, Fleck N, Gibson L, Hutchinson J, Wadley HNG (2002) Metal Foams: a Design Guide. Mater Des 23:119. https://doi.org/10.1016/S0261-3069(01)00049-8
  • Zok FW, Rathbun HJ, Wei Z, Evans AG (2003) Design of metallic textile core sandwich panels. Int J Solids Struct 40(21):5707–5722. https://doi.org/https://doi.org/10.1016/S0020-7683(03)00375-5
  • Wadley HNG, Fleck NA, Evans AG (2003) Fabrication and structural performance of periodic cellular metal sandwich structures. Compos Sci Technol 63(16):2331–2343. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00266-5
  • Zenkert D (1995) An Introduction to Sandwich Construction. Engineering Materials Advisory Services
  • Gibson LJ (2003) Cellular Solids. MRS Bull 28(4):270–274. https://doi.org/DOI: 10.1557/mrs2003.79
  • Ivanovich SA (2016) Оптимальные размеры прямоугольного сечения бруса при косом изгибе. Вестник евразийской науки 8(2 (33)):134
  • Wang W, Qiu X (2018) Analysis of the Carrying Capacity for Tubes Under Oblique Loading. J Appl Mech 85(3). https://doi.org/10.1115/1.4038921
  • Chen DH, Masuda K (2015) Estimation of Collapse Load for Thin-Walled Rectangular Tubes Under Bending. J Appl Mech 83(3). https://doi.org/10.1115/1.4032159
  • Paulsen F, Welo T (2001) Cross-sectional deformations of rectangular hollow sections in bending: Part II — analytical models. Int J Mech Sci 43(1):131–152. https://doi.org/https://doi.org/10.1016/S0020-7403(99)00107-1
  • Su R, Tangaramvong S, Van TH (2023) An BESO Approach for Optimal Retrofit Design of Steel Rectangular-Hollow-Section Columns Supporting Crane Loads. Buildings 13(2):328
  • Kuhn J, Packer JA, Fan Y (2019) Rectangular hollow section webs under transverse compression. Can J Civ Eng 46(9):810–827
  • Bedair O (2015) Novel design procedures for rectangular hollow steel sections subject to compression and major and minor axis bending. Pract Period Struct Des Constr 20(4):4014051
  • Rincón-Dávila D, Alcalá E, Martín Á (2022) Theoretical–experimental study of the bending behavior of thin-walled rectangular tubes. Thin-Walled Struct 173:109009. https://doi.org/https://doi.org/10.1016/j.tws.2022.109009
  • Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press
  • Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  • Ito K, Kunisch K (2008) Lagrange multiplier approach to variational problems and applications. SIAM
  • Erasmus LA, Smaill JS (1990) The Mechanical Properties of BHP Structural Sections. Trans Inst Prof Eng New Zeal Civ Eng Sect 17(1):19–25
  • Mahendran M (1996) The modulus of elasticity of steel-is it 200 gpa?
  • Dassault Systèmes (2012) Abaqus Analysis User’s Manual 6.12. Documentation
  • Sellittoa A, Borrelli R, Caputo F, Riccio A, Scaramuzzino F (2011) Methodological approaches for kinematic coupling of non-matching finite element meshes. Procedia Eng 10:421–426
  • Zhao W, Ji S (2019) Mesh convergence behavior and the effect of element integration of a human head injury model. Ann Biomed Eng 47:475–486
  • Tso C-F, Molitoris DP, Snow S (2012) Propped cantilever mesh convergence study using hexahedral elements. Packag Transp Storage Secur Radioact Mater 23(10–2):30–35
  • Gardner L, Fieber A, Macorini L (2019) Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections. Structures 17:2–20. https://doi.org/https://doi.org/10.1016/j.istruc.2019.01.012
  • Vieira L (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022
  • Shen H-X (2019) A new simple method for the strength of high-strength steel thin-walled box columns subjected to axial force and biaxial end moments. Adv Civ Eng 2019
  • Razzaq Z, McVinnie WW (1982) Rectangular tubular steel columns loaded biaxially. J Struct Mech 10(4):475–493
  • Bock M, Theofanous M, Dirar S, Lipitkas N (2021) Aluminium SHS and RHS subjected to biaxial bending: Experimental testing, modelling and design recommendations. Eng Struct 227:111468
  • Zhao O, Rossi B, Gardner L, Young B (2015) Behaviour of structural stainless steel cross-sections under combined loading–Part II: Numerical modelling and design approach. Eng Struct 89:247–259

Determination of optimal cross-section dimensions of rectangular hollow sections under oblique bending: analytical and numerical study

Year 2024, , 198 - 219, 31.01.2024
https://doi.org/10.61112/jiens.1383887

Abstract

An insignificant number of rigorous studies have been devoted to the development of analytical procedures that determine the optimal cross-section dimensions of rectangular hollow section (RHS) members subjected to oblique bending, albeit their ubiquity in numerous application fields. In response to this, an analytical procedure has been developed based on the concept of minimizing maximum effective stress in the RHS caused by an applied oblique bending moment, in order to reduce material costs without compromising strength requirements. The RHS members addressed in this study have been assumed to be produced by hollowing out rectangular solid sections at different cross-section area extraction ratios; therefore, only the wall thicknesses of the RHS members have been taken into consideration as design variables. The minimization of maximum effective stress has been achieved by establishing a functional correlation between the cross-section design variables. The proposed procedure allows specifying the optimal cross-sectional dimensions for given different cross-section area extraction ratios and bringing cost-effective use of materials. After the subtle mathematical calculations, the derived analytical expressions have been made available to practical engineering in simple math forms for use in real design applications. The analytical procedure has been validated against numerical results which have been extracted from finite element analyses carried out in Abaqus engineering software.

References

  • Chavan V, Nimbalkar V, Jaiswal A (2007) Economic Evaluation of Open and Hollow Structural Sections in Industrial Trusses. Int J Innov Res Sci Eng Technol 3297:2319–8753
  • Mendoza JMG, Montes SA, Lomelí JJ, Campos JAF (2017) Size optimization of rectangular cross section members subject to fatigue constraints. J Theor Appl Mech 55:547–557
  • Wardenier J, Packer JA, Zhao X-L, Van der Vegte GJ (2002) Hollow sections in structural applications. Bouwen met staal Rotterdam,, The Netherlands
  • Dundar MA, Nuraliyev M, Sahin DE (2022) Determination of Optimal Dimensions of Polymer-Based Rectangular Hollow Sections Based on Both Adequate-Strength and Local Buckling Criteria: Analytical and Numerical Study. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2022.2139720
  • Shigley JE, Mitchell LD, Saunders H (1985) Mechanical engineering design
  • Wardenier J, Dutta D, Yeomans N (1995) Design guide for structural hollow sections in mechanical applications. Verlag TÜV Rheinland
  • Weaver PM, Ashby MF (1996) The Optimal Selection of Material and Section-shape. J Eng Des 7(2):129–150. https://doi.org/10.1080/09544829608907932
  • Deshpande VS, Fleck NA (2001) Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct 38(36):6275–6305. https://doi.org/https://doi.org/10.1016/S0020-7683(01)00103-2
  • Wicks N, Hutchinson JW (2001) Optimal truss plates. Int J Solids Struct 38(30):5165–5183. https://doi.org/https://doi.org/10.1016/S0020-7683(00)00315-2
  • Ashby M, Evans A, Fleck N, Gibson L, Hutchinson J, Wadley HNG (2002) Metal Foams: a Design Guide. Mater Des 23:119. https://doi.org/10.1016/S0261-3069(01)00049-8
  • Zok FW, Rathbun HJ, Wei Z, Evans AG (2003) Design of metallic textile core sandwich panels. Int J Solids Struct 40(21):5707–5722. https://doi.org/https://doi.org/10.1016/S0020-7683(03)00375-5
  • Wadley HNG, Fleck NA, Evans AG (2003) Fabrication and structural performance of periodic cellular metal sandwich structures. Compos Sci Technol 63(16):2331–2343. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00266-5
  • Zenkert D (1995) An Introduction to Sandwich Construction. Engineering Materials Advisory Services
  • Gibson LJ (2003) Cellular Solids. MRS Bull 28(4):270–274. https://doi.org/DOI: 10.1557/mrs2003.79
  • Ivanovich SA (2016) Оптимальные размеры прямоугольного сечения бруса при косом изгибе. Вестник евразийской науки 8(2 (33)):134
  • Wang W, Qiu X (2018) Analysis of the Carrying Capacity for Tubes Under Oblique Loading. J Appl Mech 85(3). https://doi.org/10.1115/1.4038921
  • Chen DH, Masuda K (2015) Estimation of Collapse Load for Thin-Walled Rectangular Tubes Under Bending. J Appl Mech 83(3). https://doi.org/10.1115/1.4032159
  • Paulsen F, Welo T (2001) Cross-sectional deformations of rectangular hollow sections in bending: Part II — analytical models. Int J Mech Sci 43(1):131–152. https://doi.org/https://doi.org/10.1016/S0020-7403(99)00107-1
  • Su R, Tangaramvong S, Van TH (2023) An BESO Approach for Optimal Retrofit Design of Steel Rectangular-Hollow-Section Columns Supporting Crane Loads. Buildings 13(2):328
  • Kuhn J, Packer JA, Fan Y (2019) Rectangular hollow section webs under transverse compression. Can J Civ Eng 46(9):810–827
  • Bedair O (2015) Novel design procedures for rectangular hollow steel sections subject to compression and major and minor axis bending. Pract Period Struct Des Constr 20(4):4014051
  • Rincón-Dávila D, Alcalá E, Martín Á (2022) Theoretical–experimental study of the bending behavior of thin-walled rectangular tubes. Thin-Walled Struct 173:109009. https://doi.org/https://doi.org/10.1016/j.tws.2022.109009
  • Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press
  • Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  • Ito K, Kunisch K (2008) Lagrange multiplier approach to variational problems and applications. SIAM
  • Erasmus LA, Smaill JS (1990) The Mechanical Properties of BHP Structural Sections. Trans Inst Prof Eng New Zeal Civ Eng Sect 17(1):19–25
  • Mahendran M (1996) The modulus of elasticity of steel-is it 200 gpa?
  • Dassault Systèmes (2012) Abaqus Analysis User’s Manual 6.12. Documentation
  • Sellittoa A, Borrelli R, Caputo F, Riccio A, Scaramuzzino F (2011) Methodological approaches for kinematic coupling of non-matching finite element meshes. Procedia Eng 10:421–426
  • Zhao W, Ji S (2019) Mesh convergence behavior and the effect of element integration of a human head injury model. Ann Biomed Eng 47:475–486
  • Tso C-F, Molitoris DP, Snow S (2012) Propped cantilever mesh convergence study using hexahedral elements. Packag Transp Storage Secur Radioact Mater 23(10–2):30–35
  • Gardner L, Fieber A, Macorini L (2019) Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-sections. Structures 17:2–20. https://doi.org/https://doi.org/10.1016/j.istruc.2019.01.012
  • Vieira L (2018) On the local buckling of RHS members under axial force and biaxial bending. Thin-Walled Struct 129:10–19. https://doi.org/10.1016/j.tws.2018.03.022
  • Shen H-X (2019) A new simple method for the strength of high-strength steel thin-walled box columns subjected to axial force and biaxial end moments. Adv Civ Eng 2019
  • Razzaq Z, McVinnie WW (1982) Rectangular tubular steel columns loaded biaxially. J Struct Mech 10(4):475–493
  • Bock M, Theofanous M, Dirar S, Lipitkas N (2021) Aluminium SHS and RHS subjected to biaxial bending: Experimental testing, modelling and design recommendations. Eng Struct 227:111468
  • Zhao O, Rossi B, Gardner L, Young B (2015) Behaviour of structural stainless steel cross-sections under combined loading–Part II: Numerical modelling and design approach. Eng Struct 89:247–259
There are 37 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Methods in Mechanical Engineering, Numerical Modelling and Mechanical Characterisation
Journal Section Research Articles
Authors

Mirali Nuraliyev 0000-0002-3063-8414

Mehmet Akif Dundar 0000-0001-5463-6774

Publication Date January 31, 2024
Submission Date October 31, 2023
Acceptance Date January 10, 2024
Published in Issue Year 2024

Cite

APA Nuraliyev, M., & Dundar, M. A. (2024). Determination of optimal cross-section dimensions of rectangular hollow sections under oblique bending: analytical and numerical study. Journal of Innovative Engineering and Natural Science, 4(1), 198-219. https://doi.org/10.61112/jiens.1383887


by.png
Journal of Innovative Engineering and Natural Science by İdris Karagöz is licensed under CC BY 4.0