Dalgacık Dönüşümü ve Özbağlanım Model Parametreleri Öznitelikleri ile Otomobil Motor Seslerinden Arıza Tespiti
Year 2020,
Volume: 3 Issue: 2, 48 - 54, 31.12.2020
Göktuğ Yılmaz
Necip Fazıl Mete
Umugabekazi Umusalama
,
Önder Aydemir
Supporting Institution
TÜBİTAK
Project Number
1139B411901576
References
- [1] Kim, GB., Kim, WJ., Kim, HU. & Lee, SY. “Machine Learning Applications in Systems Metabolic Engineering”, Current Opinion in Biotechnology,Vol. 64. August 2020, pp.1-9.
- [2] H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy. “Machine Learning for Glass Science and Engineering: A review”, Journal of Non-Crystalline Solids, 2019.
- [3] S. Amershi et al., "Software Engineering for Machine Learning: A Case Study," 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada, 2019, pp. 291-300.
- [4] T. Karatekin et al., "Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity," 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), Istanbul, Turkey, 2019, pp. 61-66.
- [5] F. Ahamed and F. Farid, "Applying Internet of Things and Machine-Learning for Personalized Healthcare: Issues and Challenges," 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia, 2018, pp. 19-21.
- [6] J. Yoo, "On-chip epilepsy detection: Where machine learning meets patient-specific healthcare," 2017 International SoC Design Conference (ISOCC), Seoul, 2017, pp. 146-147.
- [7] A. Mir and S. N. Dhage, "Diabetes Disease Prediction Using Machine Learning on Big Data of Healthcare," 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-6.
- [8] S. Mirzaei, T. Sidi, C. Keasar and S. Crivelli, "Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning," in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 5, pp. 1515-1523, 1 Sept.-Oct. 2019.
- [9] A. Hasan, O. Kalıpsız and S. Akyokuş, "Predicting financial market in big data: Deep learning," 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, 2017, pp. 510-515.
- [10] R. Xu and M. He, "Application of Deep Learning Neural Network in Online Supply Chain Financial Credit Risk Assessment," 2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 2020, pp. 224-232,
- [11] E. A. Bayrak, P. Kırcı and T. Ensari, "Comparison of Machine Learning Methods for Breast Cancer Diagnosis," 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 2019, pp. 1-3.
- [12] M. H. Memon, J. Li, A. U. Haq and M. Hunain Memon, "Early Stage Alzheimer’s Disease Diagnosis Method," 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2019, pp. 222-225.
- [13] Z.K. Senturk,” Early Diagnosis of Parkinson’s Disease Using Machine Learning Algorithms”, Medical Hypotheses, Volume 138, May 2020, Article 109603.
[14] M. I. Faisal, S. Bashir, Z. S. Khan and F. Hassan Khan, "An Evaluation of Machine Learning Classifiers and Ensembles for Early Stage Prediction of Lung Cancer," 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan, 2018, pp. 1-4.
- [15] M. Nakhashi, A. Toffy, P. V. Achuth, L. Palanichamy and C. M. Vikas, "Early Prediction of Sepsis: Using State-of-the-art Machine Learning Techniques on Vital Sign Inputs," 2019 Computing in Cardiology (CinC), Singapore, Singapore, 2019, pp. Page 1-Page 4.
- [16] Kaya, U., Yılmaz, A. & Dikmen, Y. (2019). Sağlık Alanında Kullanılan Derin Öğrenme Yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, (16), 792-808.
[17] H. Yu, C. Liu and J. Liu, "Research on Intelligent Engine Fault Detection Method Based on Machine Learning," 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC), Wuhan, China, 2018, pp. 419-423.
- [18] Z. Dongzhu, Z. Hua, D. Shiqiang and S. Yafei, "Aero-engine Bearing Fault Diagnosis Based on Deep Neural Networks," 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, Greece, 2020, pp. 145-149.
- [19] N. K. P, S. G, J. R, S. R and S. K. D, "Vibration Based IC Engine Fault Diagnosis Using Tree Family Classifiers - A Machine Learning Approach," 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 2019, pp. 225-228.
- [20] J. Xu, X. Liu, B. Wang and J. Lin, "Deep Belief Network-Based Gas Path Fault Diagnosis for Turbofan Engines," in IEEE Access, vol. 7, pp. 170333-170342, 2019.
[21] G. Zhong, H. Wang, K. Zhang and B. Jia, "Fault diagnosis of Marine diesel engine based on deep belief network," 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019, pp. 3415-3419.
- [22] R.F. Navea, E. Sybingco,“Design and Implementation of an Acoustic-Based Car Engine Fault Diagnostic System in the Android Platform”, International Research Conference in Higher Education 2013,Oct, 2013.
- [23] J. Siegel, S. Kumar, I. Ehrenberg, E.S. Sarma, “Engine Misfire Detection With Pervasive Mobile Audio”, Machine Learning and Knowledge Discovery in Databases: European Conference, Sept 19-23, 2016, Riva del Garda, Italy.
- [24] Y. Wang, Q.H. Ma, Q. Zhu, X.T. Liu, L.H. Zhao, “An intelligent approach for engine fault diagnosis based on Hilbert–Huang transform and support vector machine”, Applied Acoustics, Vol. 75, Jan 2014, pp.1-9
- [25] A.K. Kemalkar, V.K. Bairagi, “Engine fault diagnosis using sound analysis”, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Sept 9-10, 2016, Punei India, pp. 943-946.
- [26] M. Madain, A. Al-Mosaiden, M. Al-khassaweneh, “Fault diagnosis in vehicle engines using sound recognition techniques”, 2010 IEEE International Conference on Electro/Information Technology, May 20-22, 2010, Normal, IL, USA.
- [27] L. Türkan, “Sürekli Dalgacık Dönüşümü ile Yüzey Ölçümü”, Yüksek Lisans, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, 2015, Tekirdağ, Türkiye, pp. 15-18.
- [28] H. Alp, T. Ç. Akıncı, M. Albora, “Jeofizik uygulamalarda fourier ve dalgacık dönüşümlerinin karşılaştırılması”, Journal Of Engineering Sciences, Volume 14(1), 2008, pp. 67-76.
- [29] Feigelson Eric D., Babu G. Jogesh, Caceres Gabriel A., “Autoregressive Times Series Methods for Time Domain Astronomy”, Frontiers in Physics, Volume 6(80), 2018, pp.2-3.
- [30] Saedsayad, “K Nearest Neighbors - Classification”, website. [Online]. (https://www.saedsayad.com/k_nearest_neighbors.htm), Available as of November 15, 2020.
Wavelet Transform and Autoregressive Model Parameter Features based Engine Fault Diagnosis System
Year 2020,
Volume: 3 Issue: 2, 48 - 54, 31.12.2020
Göktuğ Yılmaz
Necip Fazıl Mete
Umugabekazi Umusalama
,
Önder Aydemir
Abstract
Örüntü tanıma ve makine öğrenmesi başarılı sonuçlar sağlamasından dolayı popülerliğini giderek arttırmakta ve birçok alanda kullanılmaktadır. Bu çalışmada marka ve model farkı gözetmeksizin zamanlama kayışı ve vuruntu arızası ile normal çalışma durumlarına ait otomobil motor sesleri sınıflandırılmıştır. Önerilen yöntem iki saniyelik motor seslerinden sürekli dalgacık dönüşümü ve özbağlanım parametresi özniteliklerin k-en yakın komşuluk algoritması ile sınıflandırarak %91.8 oranında sınıflandırma doğruluğu elde etmiştir. Elde edilen sonuçlar önerilen yöntemin otomobil motor sesleri kullanılarak araçlarda meydana gelebilecek arızaları büyük oranda tespit edilebileceğini göstermiştir. Böylece, otomobil motorlarındaki arızanın erken tespiti mümkün olmakta, bu da olası kazaların ve büyük arızaların ortaya çıkmasının önüne geçmektedir. Ayrıca, önerilen yöntemin araç yetkili servislerine ve motor ustalarına rehberlik etmek ve zaman kazandırmak amaçlı da kullanılabileceği düşünülmektedir.
Project Number
1139B411901576
References
- [1] Kim, GB., Kim, WJ., Kim, HU. & Lee, SY. “Machine Learning Applications in Systems Metabolic Engineering”, Current Opinion in Biotechnology,Vol. 64. August 2020, pp.1-9.
- [2] H. Liu, Z. Fu, K. Yang, X. Xu, M. Bauchy. “Machine Learning for Glass Science and Engineering: A review”, Journal of Non-Crystalline Solids, 2019.
- [3] S. Amershi et al., "Software Engineering for Machine Learning: A Case Study," 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada, 2019, pp. 291-300.
- [4] T. Karatekin et al., "Interpretable Machine Learning in Healthcare through Generalized Additive Model with Pairwise Interactions (GA2M): Predicting Severe Retinopathy of Prematurity," 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), Istanbul, Turkey, 2019, pp. 61-66.
- [5] F. Ahamed and F. Farid, "Applying Internet of Things and Machine-Learning for Personalized Healthcare: Issues and Challenges," 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, Australia, 2018, pp. 19-21.
- [6] J. Yoo, "On-chip epilepsy detection: Where machine learning meets patient-specific healthcare," 2017 International SoC Design Conference (ISOCC), Seoul, 2017, pp. 146-147.
- [7] A. Mir and S. N. Dhage, "Diabetes Disease Prediction Using Machine Learning on Big Data of Healthcare," 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-6.
- [8] S. Mirzaei, T. Sidi, C. Keasar and S. Crivelli, "Purely Structural Protein Scoring Functions Using Support Vector Machine and Ensemble Learning," in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 5, pp. 1515-1523, 1 Sept.-Oct. 2019.
- [9] A. Hasan, O. Kalıpsız and S. Akyokuş, "Predicting financial market in big data: Deep learning," 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, 2017, pp. 510-515.
- [10] R. Xu and M. He, "Application of Deep Learning Neural Network in Online Supply Chain Financial Credit Risk Assessment," 2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 2020, pp. 224-232,
- [11] E. A. Bayrak, P. Kırcı and T. Ensari, "Comparison of Machine Learning Methods for Breast Cancer Diagnosis," 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 2019, pp. 1-3.
- [12] M. H. Memon, J. Li, A. U. Haq and M. Hunain Memon, "Early Stage Alzheimer’s Disease Diagnosis Method," 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, Chengdu, China, 2019, pp. 222-225.
- [13] Z.K. Senturk,” Early Diagnosis of Parkinson’s Disease Using Machine Learning Algorithms”, Medical Hypotheses, Volume 138, May 2020, Article 109603.
[14] M. I. Faisal, S. Bashir, Z. S. Khan and F. Hassan Khan, "An Evaluation of Machine Learning Classifiers and Ensembles for Early Stage Prediction of Lung Cancer," 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan, 2018, pp. 1-4.
- [15] M. Nakhashi, A. Toffy, P. V. Achuth, L. Palanichamy and C. M. Vikas, "Early Prediction of Sepsis: Using State-of-the-art Machine Learning Techniques on Vital Sign Inputs," 2019 Computing in Cardiology (CinC), Singapore, Singapore, 2019, pp. Page 1-Page 4.
- [16] Kaya, U., Yılmaz, A. & Dikmen, Y. (2019). Sağlık Alanında Kullanılan Derin Öğrenme Yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, (16), 792-808.
[17] H. Yu, C. Liu and J. Liu, "Research on Intelligent Engine Fault Detection Method Based on Machine Learning," 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC), Wuhan, China, 2018, pp. 419-423.
- [18] Z. Dongzhu, Z. Hua, D. Shiqiang and S. Yafei, "Aero-engine Bearing Fault Diagnosis Based on Deep Neural Networks," 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, Greece, 2020, pp. 145-149.
- [19] N. K. P, S. G, J. R, S. R and S. K. D, "Vibration Based IC Engine Fault Diagnosis Using Tree Family Classifiers - A Machine Learning Approach," 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 2019, pp. 225-228.
- [20] J. Xu, X. Liu, B. Wang and J. Lin, "Deep Belief Network-Based Gas Path Fault Diagnosis for Turbofan Engines," in IEEE Access, vol. 7, pp. 170333-170342, 2019.
[21] G. Zhong, H. Wang, K. Zhang and B. Jia, "Fault diagnosis of Marine diesel engine based on deep belief network," 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019, pp. 3415-3419.
- [22] R.F. Navea, E. Sybingco,“Design and Implementation of an Acoustic-Based Car Engine Fault Diagnostic System in the Android Platform”, International Research Conference in Higher Education 2013,Oct, 2013.
- [23] J. Siegel, S. Kumar, I. Ehrenberg, E.S. Sarma, “Engine Misfire Detection With Pervasive Mobile Audio”, Machine Learning and Knowledge Discovery in Databases: European Conference, Sept 19-23, 2016, Riva del Garda, Italy.
- [24] Y. Wang, Q.H. Ma, Q. Zhu, X.T. Liu, L.H. Zhao, “An intelligent approach for engine fault diagnosis based on Hilbert–Huang transform and support vector machine”, Applied Acoustics, Vol. 75, Jan 2014, pp.1-9
- [25] A.K. Kemalkar, V.K. Bairagi, “Engine fault diagnosis using sound analysis”, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Sept 9-10, 2016, Punei India, pp. 943-946.
- [26] M. Madain, A. Al-Mosaiden, M. Al-khassaweneh, “Fault diagnosis in vehicle engines using sound recognition techniques”, 2010 IEEE International Conference on Electro/Information Technology, May 20-22, 2010, Normal, IL, USA.
- [27] L. Türkan, “Sürekli Dalgacık Dönüşümü ile Yüzey Ölçümü”, Yüksek Lisans, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü, 2015, Tekirdağ, Türkiye, pp. 15-18.
- [28] H. Alp, T. Ç. Akıncı, M. Albora, “Jeofizik uygulamalarda fourier ve dalgacık dönüşümlerinin karşılaştırılması”, Journal Of Engineering Sciences, Volume 14(1), 2008, pp. 67-76.
- [29] Feigelson Eric D., Babu G. Jogesh, Caceres Gabriel A., “Autoregressive Times Series Methods for Time Domain Astronomy”, Frontiers in Physics, Volume 6(80), 2018, pp.2-3.
- [30] Saedsayad, “K Nearest Neighbors - Classification”, website. [Online]. (https://www.saedsayad.com/k_nearest_neighbors.htm), Available as of November 15, 2020.