Research Article
BibTex RIS Cite
Year 2021, Volume: 4 Issue: 1, 28 - 35, 30.06.2021

Abstract

References

  • [1] Shah R., Mithulananthan N., Bansal R.C. and Ramachandaramurthy V.K. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423–1436.
  • [2] Hosenuzzaman M., Rahim N. A., Selvaraj J., Hasanuzzaman M., Malek A. B. M. A., and Nahar A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable & Sustainable Energy Reviews, 41, 284–297.
  • [3] Kroposki B., Johnson B., Zhang Y., Gevorgian V., Denholm P., Hodge B. M. and Hannegan B. (2017). Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power and Energy Magazine, 15, 61-73.
  • [4] Wan C., Zhao J., Song Y., Xu Z., Lin J. and Hu Z. (2015). Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems, 1, 38-46.
  • [5] Yagami M., Kimura N., Tsuchimoto M. and Tamura J. (2013). Power system transient stability analysis in the case of high-penetration photovoltaics. IEEE Grenoble Conference, Grenoble, 1-6.
  • [6] Eltawil M. A. and Zhao Z. (2010). Grid connected photovoltaic power systems: technical and potential problems—a review. Renewable & Sustainable Energy Reviews, 14, 112-129.
  • [7] Xiao Q., Zhao K., Jiang W. and Zhu S. (2018). The Effect of Large-Scale PV Power on Stability of Power System. 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 1173-1177.
  • [8] Eftekharnejad S., Vittal V., Heydt G. T., Keel B. and Loehr J. (2013). Impact of increased penetration of photovoltaic generation on power systems. IEEE Transactions on Power Systems, 28, 893-901.
  • [9] Yagami M., Ishikawa S., Ichinohe Y., Misawa K. and Tamura J. (2015). Power system transient stability analysis in the case of high-penetration photovoltaics (part 2). 2015 IEEE Eindhoven PowerTech, Eindhoven, 1-6.
  • [10] Mohamed S. R., Jeyanthy P. A. and Devaraj D. (2017). Investigation on the impact of high-penetration of PV generation on transient stability. 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, 1-6.
  • [11] Zainuddin, Sarjiya M., Handayani T. P., Sunanda W. and Surusa F. E. P. (2018). Transient stability assessment of large scale grid-connected photovoltaic on transmission system. 2nd International Conference on Green Energy and Applications (ICGEA), Singapore, 113-118.
  • [12] Refaat S. S., Abu-Rub H. and Mohamed A. (2017). Transient stability impact of large-scale photovoltaic system on electric power grids. 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, 1-6.
  • [13] Zhang Y., Zhu S., Sparks R. and Green I. (2012). Impacts of solar PV generators on power system stability and voltage performance. IEEE Power and Energy Society General Meeting, San Diego, CA, ,1-7.
  • [14] Tamimi B., Cañizares C. and Bhattacharya K. (2013). System Stability Impact of Large-Scale and Distributed Solar Photovoltaic Generation: The Case of Ontario, Canada. IEEE Transactions on Sustainable Energy, 4, 680-688.
  • [15] Abdlrahem A., Venayagamoorthy G. K. and Corzine K. A. (2013). Frequency stability and control of a power system with large PV plants using PMU information. North American Power Symposium (NAPS), Manhattan, KS, 1-6.
  • [16] Alquthami T., Ravindra H., Faruque M. O., Steurer M. and Baldwin T. (2010). Study of photovoltaic integration impact on system stability using custom model of PV arrays integrated with PSS/E. North American Power Symposium, Arlington, TX, 1-8.
  • [17] You S., Kou G., Liu Y., Zhang X., Cui Y., Till M. J., Yao W. and Liu Y. (2017). Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection. IEEE Access, 5, 4361-4369.
  • [18] Eftekharnejad S., Heydt G. T. and Vittal V. (2015). Optimal Generation Dispatch With High Penetration of Photovoltaic Generation. IEEE Transactions on Sustainable Energy, 6, 1013-1020.
  • [19] Saadat H. (1999). Power System Analysis. 2, McGraw-Hill, Inc.
  • [20] Machowski, J., Lubosny, Z., Bialek, J. W., and Bumby, J. R. (2020). Power system dynamics: stability and control. John Wiley & Sons.
  • [21] Munkhchuluun, E., Meegahapola, L., ve Vahidnia, A. (2017). Impact on rotor angle stability with high solar-PV generation in power networks. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Eylül, 1-6.
  • [22] Anderson P. M. and A. A. Fouad (2008). Power System Control and Stability. John Wiley & Sons.
  • [23] DigSILENT (2020). Nine bus system. Digsilent Powerfactory.
  • [24] Shah R., Mithulananthan N., Sode-Yome A. and Lee K. Y. (2010). Impact of large-scale PV penetration on power system oscillatory stability. IEEE PES General Meeting, Providence, RI, 1-7.
  • [25] Pourbeik P. (2015). Model user guide for generic renewable energy system models. Electric Power Research Institute.
  • [26] WECC Renewable Energy Modeling Task Force. Central station photovoltaic power plant model balidation guideline. March 2015. [Online]. https://www.wecc.org/Reliability/150318 WECC PV Plant Model Val Guide Rev2.pdf
  • [27] Lammert, Gustav (2019). Modelling, control and stability analysis of photovoltaic systems in power system dynamic studies. Vol. 9. kassel university press GmbH.
  • [28] DigSILENT (2020). WECC distributed small PV plants 25MVA, WECC large-scale PV plant 250MVA. DigSILENT GmbH.
  • [29] Kundur P., Paserba J., Ajjarapu V., Andersson G., Bose A., Canizares C., Hatziargyriou N. Hill D., Stankovic A. Taylor C., Van Cutsem T. and Vittal V. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19, 1387-1401.
  • [30] Kundur P. (1994). Power system stability and control. 7 McGraw-Hill, Inc., New York.

Fotovoltaik Santrallerin Rampa Oranlarının Güç Sistemi Kararlılığına Etkisi

Year 2021, Volume: 4 Issue: 1, 28 - 35, 30.06.2021

Abstract

Yenilenebilir enerji kaynakları kullanımının artması ile bu sistemlerin mevcut elektrik şebekesi üzerindeki etkilerinin incelenmesi güç sistemi kararlılığı açısından önem arz etmektedir. Bu çalışmada IEEE-9 Baralı güç sisteminde fotovoltaik (FV) santral farklı rampa oranları bakımından geleneksel senkron generatörlü santralle karşılaştırılarak güç sistemi kararlılık analizleri yapılmıştır. Çalışma DigSlient Powerfactory simülasyon programı kullanılarak 4 farklı senaryo üzerinden gerçekleştirilmiştir. Bu senaryolarda 3-faz kısa devre arızası oluşturularak sistemdeki dinamik durumlar rotor açısı, frekans ve gerilim kararlılığı için analiz edilmiştir. Sonuç olarak, geleneksel güç sistemlerine entegre edilen PV santrallerin olumlu ve olumsuz etkileri farklı senaryolar altında analiz edilmiştir.

References

  • [1] Shah R., Mithulananthan N., Bansal R.C. and Ramachandaramurthy V.K. (2015). A review of key power system stability challenges for large-scale PV integration. Renewable and Sustainable Energy Reviews, 41, 1423–1436.
  • [2] Hosenuzzaman M., Rahim N. A., Selvaraj J., Hasanuzzaman M., Malek A. B. M. A., and Nahar A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renewable & Sustainable Energy Reviews, 41, 284–297.
  • [3] Kroposki B., Johnson B., Zhang Y., Gevorgian V., Denholm P., Hodge B. M. and Hannegan B. (2017). Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power and Energy Magazine, 15, 61-73.
  • [4] Wan C., Zhao J., Song Y., Xu Z., Lin J. and Hu Z. (2015). Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems, 1, 38-46.
  • [5] Yagami M., Kimura N., Tsuchimoto M. and Tamura J. (2013). Power system transient stability analysis in the case of high-penetration photovoltaics. IEEE Grenoble Conference, Grenoble, 1-6.
  • [6] Eltawil M. A. and Zhao Z. (2010). Grid connected photovoltaic power systems: technical and potential problems—a review. Renewable & Sustainable Energy Reviews, 14, 112-129.
  • [7] Xiao Q., Zhao K., Jiang W. and Zhu S. (2018). The Effect of Large-Scale PV Power on Stability of Power System. 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, 1173-1177.
  • [8] Eftekharnejad S., Vittal V., Heydt G. T., Keel B. and Loehr J. (2013). Impact of increased penetration of photovoltaic generation on power systems. IEEE Transactions on Power Systems, 28, 893-901.
  • [9] Yagami M., Ishikawa S., Ichinohe Y., Misawa K. and Tamura J. (2015). Power system transient stability analysis in the case of high-penetration photovoltaics (part 2). 2015 IEEE Eindhoven PowerTech, Eindhoven, 1-6.
  • [10] Mohamed S. R., Jeyanthy P. A. and Devaraj D. (2017). Investigation on the impact of high-penetration of PV generation on transient stability. 2017 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Srivilliputhur, 1-6.
  • [11] Zainuddin, Sarjiya M., Handayani T. P., Sunanda W. and Surusa F. E. P. (2018). Transient stability assessment of large scale grid-connected photovoltaic on transmission system. 2nd International Conference on Green Energy and Applications (ICGEA), Singapore, 113-118.
  • [12] Refaat S. S., Abu-Rub H. and Mohamed A. (2017). Transient stability impact of large-scale photovoltaic system on electric power grids. 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, 1-6.
  • [13] Zhang Y., Zhu S., Sparks R. and Green I. (2012). Impacts of solar PV generators on power system stability and voltage performance. IEEE Power and Energy Society General Meeting, San Diego, CA, ,1-7.
  • [14] Tamimi B., Cañizares C. and Bhattacharya K. (2013). System Stability Impact of Large-Scale and Distributed Solar Photovoltaic Generation: The Case of Ontario, Canada. IEEE Transactions on Sustainable Energy, 4, 680-688.
  • [15] Abdlrahem A., Venayagamoorthy G. K. and Corzine K. A. (2013). Frequency stability and control of a power system with large PV plants using PMU information. North American Power Symposium (NAPS), Manhattan, KS, 1-6.
  • [16] Alquthami T., Ravindra H., Faruque M. O., Steurer M. and Baldwin T. (2010). Study of photovoltaic integration impact on system stability using custom model of PV arrays integrated with PSS/E. North American Power Symposium, Arlington, TX, 1-8.
  • [17] You S., Kou G., Liu Y., Zhang X., Cui Y., Till M. J., Yao W. and Liu Y. (2017). Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection. IEEE Access, 5, 4361-4369.
  • [18] Eftekharnejad S., Heydt G. T. and Vittal V. (2015). Optimal Generation Dispatch With High Penetration of Photovoltaic Generation. IEEE Transactions on Sustainable Energy, 6, 1013-1020.
  • [19] Saadat H. (1999). Power System Analysis. 2, McGraw-Hill, Inc.
  • [20] Machowski, J., Lubosny, Z., Bialek, J. W., and Bumby, J. R. (2020). Power system dynamics: stability and control. John Wiley & Sons.
  • [21] Munkhchuluun, E., Meegahapola, L., ve Vahidnia, A. (2017). Impact on rotor angle stability with high solar-PV generation in power networks. In 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), IEEE, Eylül, 1-6.
  • [22] Anderson P. M. and A. A. Fouad (2008). Power System Control and Stability. John Wiley & Sons.
  • [23] DigSILENT (2020). Nine bus system. Digsilent Powerfactory.
  • [24] Shah R., Mithulananthan N., Sode-Yome A. and Lee K. Y. (2010). Impact of large-scale PV penetration on power system oscillatory stability. IEEE PES General Meeting, Providence, RI, 1-7.
  • [25] Pourbeik P. (2015). Model user guide for generic renewable energy system models. Electric Power Research Institute.
  • [26] WECC Renewable Energy Modeling Task Force. Central station photovoltaic power plant model balidation guideline. March 2015. [Online]. https://www.wecc.org/Reliability/150318 WECC PV Plant Model Val Guide Rev2.pdf
  • [27] Lammert, Gustav (2019). Modelling, control and stability analysis of photovoltaic systems in power system dynamic studies. Vol. 9. kassel university press GmbH.
  • [28] DigSILENT (2020). WECC distributed small PV plants 25MVA, WECC large-scale PV plant 250MVA. DigSILENT GmbH.
  • [29] Kundur P., Paserba J., Ajjarapu V., Andersson G., Bose A., Canizares C., Hatziargyriou N. Hill D., Stankovic A. Taylor C., Van Cutsem T. and Vittal V. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19, 1387-1401.
  • [30] Kundur P. (1994). Power system stability and control. 7 McGraw-Hill, Inc., New York.
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Research Papers
Authors

Bora Çavdar 0000-0002-0545-2925

Ömür Akyazı 0000-0001-6266-2323

Fatih Nuroglu 0000-0003-2530-8901

Publication Date June 30, 2021
Submission Date June 16, 2021
Acceptance Date June 24, 2021
Published in Issue Year 2021 Volume: 4 Issue: 1

Cite

APA Çavdar, B., Akyazı, Ö., & Nuroglu, F. (2021). Fotovoltaik Santrallerin Rampa Oranlarının Güç Sistemi Kararlılığına Etkisi. Journal of Investigations on Engineering and Technology, 4(1), 28-35.