Tüketicilerde Kaçak Elektrik Kullanımının Akıllı Sayaç Verisi Üzerinden Gradyan Artırmalı Karar Ağacı Tabanlı Makine Öğrenmesi Yöntemleriyle Tespiti
Year 2023,
Volume: 6 Issue: 1, 1 - 12, 26.07.2023
Yasin Kara
,
Ayşe Aksu
Abstract
Elektrik enerjisinin iletimi ve dağıtımında meydana gelen teknik olmayan kayıplardan başlıcası olan kaçak elektrik kullanımı, tüm dünyada karşılaşılan ciddi bir sorundur. Kaçak elektrik kullanımının, toplumun tüm kesimlerine ekonomik zararlar verdiği, toplum sağlığını ve elektrik arz güvenliğini tehdit ettiği bilinmektedir. Gerçekleşen kaçak elektrik kullanımlarının tespiti, bu durumun önüne geçilmesi için atılacak adımların başında gelmektedir. Son zamanlarda dünya genelinde kullanımı giderek artan akıllı sayaç teknolojisi, kaçak elektrik kullanımın veri güdümlü tespiti için yeni olanaklar sağlamaktadır. Bu çalışmada, tüketicilerde gerçekleşen kaçak elektrik kullanımının akıllı sayaç verileri üzerinden tespiti amacıyla, gradyan artırmalı karar ağacı (gradient boosting decision trees) tabanlı üç makine öğrenmesi modeli ele alınmıştır. Bu anlamda, LightGBM, XGBoost ve CatBoost modelleri kullanılmış ve modeller, akıllı sayaçlardan okunan tarihsel günlük elektrik tüketim verileri üzerinden ilgili tüketicinin elektrik kullanımını “yasal kullanım” veya “kaçak kullanım” olarak sınıflandırması amacıyla eğitilmiştir. Çalışmada, Çin Devlet Elektrik Şirketi’nin yayımladığı gerçek akıllı sayaç verileri kullanılmış ve kaçak elektrik kullanımı tespit başarımları kıyaslamalı bir çalışma ile irdelenmiştir.
Supporting Institution
T.C. Sanayi ve Teknoloji Bakanlığı
Project Number
AGTMPR94340
Thanks
Bu çalışma T.C. Sanayi ve Teknoloji Bakanlığı tarafından AGTMPR94340 no'lu proje ile desteklenmiştir. Çalışma boyunca desteklerini esirgemeyen Çözümevi Ar-Ge Merkezi Direktörü Sn. Hakan Çolak, Çözümevi Ar-Ge Merkezi Araştırmacıları Sn.Şükran Batur, Sn.Mustafa Özkan ve Sn. Burak Müderrisoğlu’na ve tüm Çözümevi Yönetim Danışmanlığı ve Bilgisayar Yazılım Ticaret A.Ş. ailesine teşekkürlerimizi sunarız.
References
- de Souza Savian, F., Siluk, J. C. M., Garlet, T. B., do Nascimento, F. M., Pinheiro, J. R., & Vale, Z. (2021). Non-technical losses: A systematic contemporary article review. Renewable and Sustainable Energy Reviews, 147, 111205.
- Enerji Piyasası Düzenleme Kurumu (EPDK). (2022). Güncel 6446 Sayılı Elektrik Piyasası Kanunu. https://www.epdk.gov.tr/Detay/Icerik/3-14650/guncel-6446-sayili-elektrik-piyasasi-kanunu (Erişim tarihi: 01.04.2023).
- Yıldız, E., & Çetinkaya, N. (2022). Elektrik güç sistemlerindeki kaçak kullanımların yapay sinir ağları ile tahmini. Journal of Investigations on Engineering and Technology, 5(1), 1-10.
- Biswas, P. P., Cai, H., Zhou, B., Chen, B., Mashima, D., & Zheng, V. W. (2019). Electricity theft pinpointing through correlation analysis of master and individual meter readings. IEEE Transactions on Smart Grid, 11(4), 3031-3042.
- Türkiye Elektrik Dağıtım Anonim Şirketi (TEDAŞ). (2020). 2020 Yılı Türkiye Elektrik Dağıtımı Sektör Raporu. https://www.tedas.gov.tr/sx.web.docs
/tedas/docs/Stratejikplan/2020_Yili_Turkiye_Elektrik_Dagitimi_Sektor_Raporu.pdf (Erişim tarihi: 01.04.2023).
- T.C. Hakkari Valiliği. (2020). İlimiz Türkiye Genelinde Kaçak Elektriğin En Çok Kullanıldığı İlk 5 il arasında Yer Alıyor. http://www.hakkari.gov.tr/ilimiz-turkiye-genelinde-kacak-elektrigin-en-cok-kullanildigi-ilk-5-il-arasinda-yer-aliyor (Erişim tarihi: 01.04.2023).
- Hasan, M. N., Toma, R. N., Nahid, A. A., Islam, M. M., & Kim, J. M. (2019). Electricity theft detection in smart grid systems: A CNN-LSTM based approach. Energies, 12(17), 3310.
- Leite, J. B., & Mantovani, J. R. S. (2016). Detecting and locating non-technical losses in modern distribution networks. IEEE Transactions on Smart Grid, 9(2), 1023-1032.
- Haq, E. U., Pei, C., Zhang, R., Jianjun, H., & Ahmad, F. (2023). Electricity-theft detection for smart grid security using smart meter data: A deep-CNN based approach. Energy Reports, 9, 634-643.
- Mertoğlu, Z., & Tezcan, S. S. (2019). Kaçak Elektrik Kullanımının Enterkonnekte Sisteme Etkileri. El-Cezeri, 6(3), 571-584.
- Otuoze, A. O., Mustafa, M. W., Abioye, A. E., Sultana, U., Usman, A. M., Ibrahim, O., ... & Abu-Saeed, A. (2022). A rule-based model for electricity theft prevention in advanced metering infrastructure. Journal of Electrical Systems and Information Technology, 9(1), 1-17.
- Kocaman, B. (2018). Teknik Olmayan Enerji Kayıplarının Azaltılmasında PLC Sayaçlarının Önemi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 220-230.
- Yan, Z., & Wen, H. (2021). Performance analysis of electricity theft detection for the smart grid: An overview. IEEE Transactions on Instrumentation and Measurement, 71, 1-28.
- Huang, Y., & Xu, Q. (2021). Electricity theft detection based on stacked sparse denoising autoencoder. International Journal of Electrical Power & Energy Systems, 125, 106448.
- Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., & Choi, J. G. (2020). LSTM and bat-based RUSBoost approach for electricity theft detection. Applied Sciences, 10(12), 4378.
- Lepolesa, L. J., Achari, S., & Cheng, L. (2022). Electricity theft detection in smart grids based on deep neural network. IEEE Access, 10, 39638-39655.
- Pereira, J., & Saraiva, F. (2021). Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data handling techniques. International Journal of Electrical Power & Energy Systems, 131, 107085.
- Lin, G., Feng, H., Feng, X., Wen, H., Li, Y., Hong, S., & Ni, Z. (2021). Electricity theft detection in power consumption data based on adaptive tuning recurrent neural network. Frontiers in Energy Research, 9, 773805.
- Tehrani, S. O., Moghaddam, M. H. Y., & Asadi, M. (2020, September). Decision tree based electricity theft detection in smart grid. In 2020 4th International conference on smart city, internet of things and applications (SCIOT) (pp. 46-51). IEEE.
- Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., & Zhao, Q. (2019). Electricity theft detection in power grids with deep learning and random forests. Journal of Electrical and Computer Engineering, 2019, 1-12.
- Toma, R. N., Hasan, M. N., Nahid, A. A., & Li, B. (2019, May). Electricity theft detection to reduce non-technical loss using support vector machine in smart grid. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT) (pp. 1-6). IEEE.
- Aslam, Z., Ahmed, F., Almogren, A., Shafiq, M., Zuair, M., & Javaid, N. (2020). An attention guided semi-supervised learning mechanism to detect electricity frauds in the distribution systems. IEEE Access, 8, 221767-221782.
- Lu, X., Zhou, Y., Wang, Z., Yi, Y., Feng, L., & Wang, F. (2019). Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies, 12(18), 3452.
- Boucetta, C., Flauzac, O., Nassour, A. N. M., & Nolot, F. (2020, June). Multi-level Hierarchical Clustering Algorithm For Energy-theft Detection in Smart Grid Networks. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE.
- Lin, Q., Li, M., Feng, S., Yang, J., Surn, X., Li, J., ... & Xie, X. (2022, September). Identification of electricity theft based on the k-means clustering method. In 2022 IEEE 9th International Conference on Power Electronics Systems and Applications (PESA) (pp. 1-6). IEEE.
- Zheng, Z., Yang, Y., Niu, X., Dai, H. N., & Zhou, Y. (2017). Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. on Industrial Informatics, 14(4), 1606-1615.
- State Grid Cooperation of China. (2023). http://www.sgcc.com.cn/ (Erişim tarihi: 01.04.2023).
- henryRDlab. (2018). https://github.com/henryRDlab/ElectricityTheftDetection (Erişim tarihi: 01.04.2023).
- Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1), 1-37.
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.
- Aydin, Z. E., & Ozturk, Z. K. (2021). Performance analysis of XGBoost classifier with missing data. Manchester Journal of Artificial Intelligence and Applied Sciences (MJAIAS), 2(02), 2021.
- Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446-3453.
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189-1232.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
- Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794).
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31.
Detection of Electricity Theft in Consumers through Gradient Boosting Decision Tree-based Machine Learning Methods using Smart Meter Data
Year 2023,
Volume: 6 Issue: 1, 1 - 12, 26.07.2023
Yasin Kara
,
Ayşe Aksu
Abstract
Electricity theft, which is one of the major non-technical losses in the transmission and distribution of electricity, is a serious problem encountered worldwide. It is known that electricity theft causes economic losses to all segments of society and threatens public health and electricity supply security. The detection of electricity theft is one of the primary steps to be taken to prevent this situation. Recent developments on smart meter technology, which is increasingly used worldwide, provides new opportunities for data-driven detection of electricity theft. In this study, three machine learning models based on gradient boosting decision trees, namely LightGBM, XGBoost, and CatBoost, are adopted for the detection of electricity theft in consumers through smart meter data. The models are trained to classify the consumer's electricity usage as "legal usage" or "theft usage" using historical daily electricity consumption data obtained from smart meters. Real smart meter data published by the State Grid Corporation of China are used in the study, and the detection performance of electricity theft is analyzed through a comparative assessment.
Project Number
AGTMPR94340
References
- de Souza Savian, F., Siluk, J. C. M., Garlet, T. B., do Nascimento, F. M., Pinheiro, J. R., & Vale, Z. (2021). Non-technical losses: A systematic contemporary article review. Renewable and Sustainable Energy Reviews, 147, 111205.
- Enerji Piyasası Düzenleme Kurumu (EPDK). (2022). Güncel 6446 Sayılı Elektrik Piyasası Kanunu. https://www.epdk.gov.tr/Detay/Icerik/3-14650/guncel-6446-sayili-elektrik-piyasasi-kanunu (Erişim tarihi: 01.04.2023).
- Yıldız, E., & Çetinkaya, N. (2022). Elektrik güç sistemlerindeki kaçak kullanımların yapay sinir ağları ile tahmini. Journal of Investigations on Engineering and Technology, 5(1), 1-10.
- Biswas, P. P., Cai, H., Zhou, B., Chen, B., Mashima, D., & Zheng, V. W. (2019). Electricity theft pinpointing through correlation analysis of master and individual meter readings. IEEE Transactions on Smart Grid, 11(4), 3031-3042.
- Türkiye Elektrik Dağıtım Anonim Şirketi (TEDAŞ). (2020). 2020 Yılı Türkiye Elektrik Dağıtımı Sektör Raporu. https://www.tedas.gov.tr/sx.web.docs
/tedas/docs/Stratejikplan/2020_Yili_Turkiye_Elektrik_Dagitimi_Sektor_Raporu.pdf (Erişim tarihi: 01.04.2023).
- T.C. Hakkari Valiliği. (2020). İlimiz Türkiye Genelinde Kaçak Elektriğin En Çok Kullanıldığı İlk 5 il arasında Yer Alıyor. http://www.hakkari.gov.tr/ilimiz-turkiye-genelinde-kacak-elektrigin-en-cok-kullanildigi-ilk-5-il-arasinda-yer-aliyor (Erişim tarihi: 01.04.2023).
- Hasan, M. N., Toma, R. N., Nahid, A. A., Islam, M. M., & Kim, J. M. (2019). Electricity theft detection in smart grid systems: A CNN-LSTM based approach. Energies, 12(17), 3310.
- Leite, J. B., & Mantovani, J. R. S. (2016). Detecting and locating non-technical losses in modern distribution networks. IEEE Transactions on Smart Grid, 9(2), 1023-1032.
- Haq, E. U., Pei, C., Zhang, R., Jianjun, H., & Ahmad, F. (2023). Electricity-theft detection for smart grid security using smart meter data: A deep-CNN based approach. Energy Reports, 9, 634-643.
- Mertoğlu, Z., & Tezcan, S. S. (2019). Kaçak Elektrik Kullanımının Enterkonnekte Sisteme Etkileri. El-Cezeri, 6(3), 571-584.
- Otuoze, A. O., Mustafa, M. W., Abioye, A. E., Sultana, U., Usman, A. M., Ibrahim, O., ... & Abu-Saeed, A. (2022). A rule-based model for electricity theft prevention in advanced metering infrastructure. Journal of Electrical Systems and Information Technology, 9(1), 1-17.
- Kocaman, B. (2018). Teknik Olmayan Enerji Kayıplarının Azaltılmasında PLC Sayaçlarının Önemi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 220-230.
- Yan, Z., & Wen, H. (2021). Performance analysis of electricity theft detection for the smart grid: An overview. IEEE Transactions on Instrumentation and Measurement, 71, 1-28.
- Huang, Y., & Xu, Q. (2021). Electricity theft detection based on stacked sparse denoising autoencoder. International Journal of Electrical Power & Energy Systems, 125, 106448.
- Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., & Choi, J. G. (2020). LSTM and bat-based RUSBoost approach for electricity theft detection. Applied Sciences, 10(12), 4378.
- Lepolesa, L. J., Achari, S., & Cheng, L. (2022). Electricity theft detection in smart grids based on deep neural network. IEEE Access, 10, 39638-39655.
- Pereira, J., & Saraiva, F. (2021). Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data handling techniques. International Journal of Electrical Power & Energy Systems, 131, 107085.
- Lin, G., Feng, H., Feng, X., Wen, H., Li, Y., Hong, S., & Ni, Z. (2021). Electricity theft detection in power consumption data based on adaptive tuning recurrent neural network. Frontiers in Energy Research, 9, 773805.
- Tehrani, S. O., Moghaddam, M. H. Y., & Asadi, M. (2020, September). Decision tree based electricity theft detection in smart grid. In 2020 4th International conference on smart city, internet of things and applications (SCIOT) (pp. 46-51). IEEE.
- Li, S., Han, Y., Yao, X., Yingchen, S., Wang, J., & Zhao, Q. (2019). Electricity theft detection in power grids with deep learning and random forests. Journal of Electrical and Computer Engineering, 2019, 1-12.
- Toma, R. N., Hasan, M. N., Nahid, A. A., & Li, B. (2019, May). Electricity theft detection to reduce non-technical loss using support vector machine in smart grid. In 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT) (pp. 1-6). IEEE.
- Aslam, Z., Ahmed, F., Almogren, A., Shafiq, M., Zuair, M., & Javaid, N. (2020). An attention guided semi-supervised learning mechanism to detect electricity frauds in the distribution systems. IEEE Access, 8, 221767-221782.
- Lu, X., Zhou, Y., Wang, Z., Yi, Y., Feng, L., & Wang, F. (2019). Knowledge embedded semi-supervised deep learning for detecting non-technical losses in the smart grid. Energies, 12(18), 3452.
- Boucetta, C., Flauzac, O., Nassour, A. N. M., & Nolot, F. (2020, June). Multi-level Hierarchical Clustering Algorithm For Energy-theft Detection in Smart Grid Networks. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE.
- Lin, Q., Li, M., Feng, S., Yang, J., Surn, X., Li, J., ... & Xie, X. (2022, September). Identification of electricity theft based on the k-means clustering method. In 2022 IEEE 9th International Conference on Power Electronics Systems and Applications (PESA) (pp. 1-6). IEEE.
- Zheng, Z., Yang, Y., Niu, X., Dai, H. N., & Zhou, Y. (2017). Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Trans. on Industrial Informatics, 14(4), 1606-1615.
- State Grid Cooperation of China. (2023). http://www.sgcc.com.cn/ (Erişim tarihi: 01.04.2023).
- henryRDlab. (2018). https://github.com/henryRDlab/ElectricityTheftDetection (Erişim tarihi: 01.04.2023).
- Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1), 1-37.
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357.
- Aydin, Z. E., & Ozturk, Z. K. (2021). Performance analysis of XGBoost classifier with missing data. Manchester Journal of Artificial Intelligence and Applied Sciences (MJAIAS), 2(02), 2021.
- Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446-3453.
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189-1232.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
- Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794).
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31.