Research Article
BibTex RIS Cite

Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı

Year 2022, , 194 - 206, 01.03.2022
https://doi.org/10.21597/jist.1008632

Abstract

Fotovoltaik paneller ile gerçekleştirilen uygulamalı eğitimlerde karşılaşılan problemlerden birisi de uygulanacak ışığın kaynağıdır. Güneşin günün her vaktinde istenen şiddette olmaması ve meteorolojik olaylar nedeniyle dış ortamda doğal ışık kullanarak eğitim yapmak oldukça zordur. Kapalı ortamlardaki uygulamalı eğitimlerde ise panele doğal güneş ışığı uygulamak yerine büyük hacimli ve güç gereksinimi fazla olan yapay ışık kaynakları kullanmak en sık tercih edilen yöntemdir. Fotovoltaik paneller ile aynı elektriksel özelliklere sahip bir emülatör ile doğal veya yapay ışık kaynağına ihtiyaç duymadan düşük maliyetler ile uygulamalı eğitimler gerçekleştirilebilir. Bu çalışmada, önemli bir yenilenebilir enerji kaynağı olan fotovoltaik hücrenin tek diyotlu modeli esas alınarak bir fotovoltaik panel emülatörü tasarlanmış; düşük maliyetli, deneysel çalışmalar için ışık kaynağına ihtiyaç duymayan, öğrencilerde psikomotor ve bilişsel davranışların geliştirilebileceği prototip bir sistem ortaya çıkarılmıştır. Emülatörün tasarımı için ticari maksatlı üretilen bir fotovoltaik panel referans alınmış ve elektriksel özellikleri tespit edilmiştir. Tasarlanan emülatörün doğrulanmasında kullanılmak üzere referans panel için dijital ikiz oluşturulmuştur. Geliştirilen emülatörde; güneşlenme miktarı 50 W m-2 ile 1000 W m-2 aralığında, panel sıcaklığı 0 °C ile 80 °C aralığında bilgisayar aracılığı ile değiştirilebilir. Emülatörde 10 W maksimum güç hedeflenmiş, %0.1 hata ile 10.01 W maksimum güç elde edilmiştir. Geliştirilen emülatörün dijital ikizi ile yapılan doğrulamasında elde edilen elektriksel verilerin, referans panelin elektriksel verileri ile uyumlu olduğu görülmüştür.

References

  • Anonim, 2018, TRP Serisi Polikristal Fotovoltaik Paneller, http://www.tera-solar.com/upload/ dosyalar/TERA_SOLAR_250W_300W_Fotovoltaik_Panel.pdf (Erişim Tarihi: 01.10.2021).
  • Anonim, 2019, Renewable Energy Trainer, https://www.heliocentrisacademia.com/product/renewable_ energy_trainer (Erişim Tarihi: 01.10.2021).
  • Anonim, 2020, Statistical Review of World Energy, https://www.bp.com/content/dam/bp/business-sites/ en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (Erişim Tarihi: 01.10.2021).
  • Anonim, 2021, EPH 3 Professional Photovoltaics Trainer (PV), https://www.lucas-nuelle.us/2768/apg/13261/ EPH-3-Professional-Photovoltaics-Trainer-PV-.htm (Erişim Tarihi: 01.10.2021).
  • Alqahtani A, Alsaffar M, El-Sayed M, Behbehani H, 2018. A photovoltaic system experiment in a laboratory environment. The International Journal of Electrical Engineering & Education 55(1):31–43.
  • Aydın İ, 2014. Balıkesir’de Rüzgâr Enerjisi. Doğu Coğrafya Dergisi 18:29–50.
  • Bartie NJ, Cobos-Becerra YL, Fröhling M, Schlatmann R, Reuter MA, 2021. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: Assessment and opportunities. Resources, Conservation and Recycling 169:105516.
  • Bayramoğlu T, 2018. Yenilenebilir Enerji Potansiyeli ve Etkileri: Bayburt Örneği. İşletme Ekonomi ve Yönetim Araştırmaları Dergisi 1(1):1–16.
  • Boschert S, Rosen R, 2016. Digital Twin---The Simulation Aspect. In: Hehenberger P, Bradley D, eds. Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers. 59–74, Cham: Springer International Publishing.
  • Can H, 2013. Model of a photovoltaic panel emulator in MATLAB-Simulink. Turkish Journal of Electrical Engineering and Computer Science 21:300–308.
  • Fuller A, Fan Z, Day C, Barlow C, 2020. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 8:108952–108971.
  • Gençer Ç, Akkaya S, Gürkan S, 2009. Wind Energy Potential In Turkey And Case Study Of Three Projects. 5th International Advanced Technologies Symposium (IATS’09). 1–4, Karabük,Türkiye.
  • Grieves M, 2006.Product lifecycle management: driving the next generation of lean thinking NewYork: McGraw-Hill Education.
  • Grieves M, 2016. Origins of the Digital Twin Concept
  • Guarino A, Monmasson É, Spagnuolo G, 2021. SoC-based embedded real-time simulation of mismatched photovoltaic strings. Mathematics and Computers in Simulation 184:267–281.
  • Gürkan S, Karapınar M, Sorgunlu H, Öztürk O, Doğan S, 2020. Development of a photovoltaic panel emulator and LabVIEW-based application platform. Computer Applications in Engineering Education 28(5):1291–1310.
  • İşen E, Koçhan Ö, 2020. Fotovoltaik Panelin Tek Diyotlu Modellenmesi. Mühendislik Bilimleri ve Araştırmaları Dergisi 2(1):2–10.
  • Kacan E, 2015. Renewable energy awareness in vocational and technical education. Renewable Energy 76:126–134.
  • Kavcıoğlu Ş, 2019. Yenilenebilir Enerji ve Türkiye. Finansal Araştırmalar ve Çalışmalar Dergis 11(21):209–227.
  • Kaya K, Şenel MC, Koç E, 2018. Dünyada ve Türkıye’de Yenilenebillr Enerji Kaynaklarının Değerlendirilmesi. Technological Applied Sciences 13:219–234.
  • Khaled N, Pattel B, Siddiqui A, 2020. 6 - Digital twin model creation of solar panels. In: Khaled N, Pattel B, Siddiqui A, eds. Digital Twin Development and Deployment on the Cloud. 137–162, Academic Press;
  • Kumaş E, Erol S, 2021. Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi Erken Görü
  • Rosen R, von Wichert G, Lo G, Bettenhausen KD, 2015. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine 48(3):567–572.
  • Senthilnathan K, Annapoorani I, 2019. Cyber Twin Approach for Smart Grids. IEEE Smart Grid.
  • Shangguan D, Chen L, Ding J, 2020. A Digital Twin-Based Approach for the Fault Diagnosis and Health Monitoring of a Complex Satellite System. Symmetry 12(8)
  • Tagare DM, 2011.Electric Power Generation Wiley.
  • Tao F, Cheng J, Qi Q, 2017. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology 94(2018):3563–3576.
  • Yılmaz EA, Öziç HC, 2018. Türkiye’nin Yenilenebilir Enerji Potansiyeli ve Gelecek Hedefleri. Ordu Üniversitesi Sosyal Bilimler Araştırmaları Dergisi 8(3):525–535.

Using Digital Twin in Photovoltaic Panel Emulator Design

Year 2022, , 194 - 206, 01.03.2022
https://doi.org/10.21597/jist.1008632

Abstract

One of the problems encountered in training with photovoltaic panels is the source of light to be applied. It is difficult to train with natural light due to the fact that the sun is not at the desired intensity at all times of the day and meteorological events. In training in indoor environments, instead of applying natural sunlight to the panel, using artificial light sources with large volumes and high power requirements is the most preferred method. With an emulator with the same electrical characteristics as photovoltaic panels, practical training can be carried out at low costs without the need for natural or artificial light sources. In this study, a photovoltaic panel emulator was designed based on the single diode model of the photovoltaic cell, and a prototype system has been revealed that does not need a light source in experimental studies and can improve psychomotor behaviors on students. The electrical properties of a commercially produced photovoltaic panel were taken as reference for the design of the emulator. A digital twin has been created for the reference panel to be used in the verification of the designed emulator. In the developed emulator; the amount of sun exposure and the panel temperature can be changed by computer. In the emulator, 10W maximum power was targeted, and 10.01W has been obtained with an error of 0.1%. In the verification of the developed emulator with its digital twin, it has been seen that the electrical data obtained were compatible with the electrical data of the reference panel.

References

  • Anonim, 2018, TRP Serisi Polikristal Fotovoltaik Paneller, http://www.tera-solar.com/upload/ dosyalar/TERA_SOLAR_250W_300W_Fotovoltaik_Panel.pdf (Erişim Tarihi: 01.10.2021).
  • Anonim, 2019, Renewable Energy Trainer, https://www.heliocentrisacademia.com/product/renewable_ energy_trainer (Erişim Tarihi: 01.10.2021).
  • Anonim, 2020, Statistical Review of World Energy, https://www.bp.com/content/dam/bp/business-sites/ en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (Erişim Tarihi: 01.10.2021).
  • Anonim, 2021, EPH 3 Professional Photovoltaics Trainer (PV), https://www.lucas-nuelle.us/2768/apg/13261/ EPH-3-Professional-Photovoltaics-Trainer-PV-.htm (Erişim Tarihi: 01.10.2021).
  • Alqahtani A, Alsaffar M, El-Sayed M, Behbehani H, 2018. A photovoltaic system experiment in a laboratory environment. The International Journal of Electrical Engineering & Education 55(1):31–43.
  • Aydın İ, 2014. Balıkesir’de Rüzgâr Enerjisi. Doğu Coğrafya Dergisi 18:29–50.
  • Bartie NJ, Cobos-Becerra YL, Fröhling M, Schlatmann R, Reuter MA, 2021. The resources, exergetic and environmental footprint of the silicon photovoltaic circular economy: Assessment and opportunities. Resources, Conservation and Recycling 169:105516.
  • Bayramoğlu T, 2018. Yenilenebilir Enerji Potansiyeli ve Etkileri: Bayburt Örneği. İşletme Ekonomi ve Yönetim Araştırmaları Dergisi 1(1):1–16.
  • Boschert S, Rosen R, 2016. Digital Twin---The Simulation Aspect. In: Hehenberger P, Bradley D, eds. Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers. 59–74, Cham: Springer International Publishing.
  • Can H, 2013. Model of a photovoltaic panel emulator in MATLAB-Simulink. Turkish Journal of Electrical Engineering and Computer Science 21:300–308.
  • Fuller A, Fan Z, Day C, Barlow C, 2020. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 8:108952–108971.
  • Gençer Ç, Akkaya S, Gürkan S, 2009. Wind Energy Potential In Turkey And Case Study Of Three Projects. 5th International Advanced Technologies Symposium (IATS’09). 1–4, Karabük,Türkiye.
  • Grieves M, 2006.Product lifecycle management: driving the next generation of lean thinking NewYork: McGraw-Hill Education.
  • Grieves M, 2016. Origins of the Digital Twin Concept
  • Guarino A, Monmasson É, Spagnuolo G, 2021. SoC-based embedded real-time simulation of mismatched photovoltaic strings. Mathematics and Computers in Simulation 184:267–281.
  • Gürkan S, Karapınar M, Sorgunlu H, Öztürk O, Doğan S, 2020. Development of a photovoltaic panel emulator and LabVIEW-based application platform. Computer Applications in Engineering Education 28(5):1291–1310.
  • İşen E, Koçhan Ö, 2020. Fotovoltaik Panelin Tek Diyotlu Modellenmesi. Mühendislik Bilimleri ve Araştırmaları Dergisi 2(1):2–10.
  • Kacan E, 2015. Renewable energy awareness in vocational and technical education. Renewable Energy 76:126–134.
  • Kavcıoğlu Ş, 2019. Yenilenebilir Enerji ve Türkiye. Finansal Araştırmalar ve Çalışmalar Dergis 11(21):209–227.
  • Kaya K, Şenel MC, Koç E, 2018. Dünyada ve Türkıye’de Yenilenebillr Enerji Kaynaklarının Değerlendirilmesi. Technological Applied Sciences 13:219–234.
  • Khaled N, Pattel B, Siddiqui A, 2020. 6 - Digital twin model creation of solar panels. In: Khaled N, Pattel B, Siddiqui A, eds. Digital Twin Development and Deployment on the Cloud. 137–162, Academic Press;
  • Kumaş E, Erol S, 2021. Endüstri 4.0’da Anahtar Teknoloji Olarak Dijital İkizler. Politeknik Dergisi Erken Görü
  • Rosen R, von Wichert G, Lo G, Bettenhausen KD, 2015. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine 48(3):567–572.
  • Senthilnathan K, Annapoorani I, 2019. Cyber Twin Approach for Smart Grids. IEEE Smart Grid.
  • Shangguan D, Chen L, Ding J, 2020. A Digital Twin-Based Approach for the Fault Diagnosis and Health Monitoring of a Complex Satellite System. Symmetry 12(8)
  • Tagare DM, 2011.Electric Power Generation Wiley.
  • Tao F, Cheng J, Qi Q, 2017. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology 94(2018):3563–3576.
  • Yılmaz EA, Öziç HC, 2018. Türkiye’nin Yenilenebilir Enerji Potansiyeli ve Gelecek Hedefleri. Ordu Üniversitesi Sosyal Bilimler Araştırmaları Dergisi 8(3):525–535.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Serkan Gürkan 0000-0003-2229-3361

Emre Aytav 0000-0003-4296-6703

Publication Date March 1, 2022
Submission Date October 12, 2021
Acceptance Date November 12, 2021
Published in Issue Year 2022

Cite

APA Gürkan, S., & Aytav, E. (2022). Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı. Journal of the Institute of Science and Technology, 12(1), 194-206. https://doi.org/10.21597/jist.1008632
AMA Gürkan S, Aytav E. Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. March 2022;12(1):194-206. doi:10.21597/jist.1008632
Chicago Gürkan, Serkan, and Emre Aytav. “Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 194-206. https://doi.org/10.21597/jist.1008632.
EndNote Gürkan S, Aytav E (March 1, 2022) Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı. Journal of the Institute of Science and Technology 12 1 194–206.
IEEE S. Gürkan and E. Aytav, “Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 1, pp. 194–206, 2022, doi: 10.21597/jist.1008632.
ISNAD Gürkan, Serkan - Aytav, Emre. “Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı”. Journal of the Institute of Science and Technology 12/1 (March 2022), 194-206. https://doi.org/10.21597/jist.1008632.
JAMA Gürkan S, Aytav E. Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:194–206.
MLA Gürkan, Serkan and Emre Aytav. “Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 194-06, doi:10.21597/jist.1008632.
Vancouver Gürkan S, Aytav E. Fotovoltaik Panel Emülatörü Tasarımında Dijital İkiz Kullanımı. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(1):194-206.