Research Article
BibTex RIS Cite

Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi

Year 2022, , 142 - 151, 01.03.2022
https://doi.org/10.21597/jist.1034410

Abstract

Biyodizel, fosil yakıtlara alternatif ve çevre dostu bir yakıt olarak dikkatleri üzerine çekmektedir. Biyodizelin, mikrobiyal yağlardan sürdürülebilir ve düşük maliyetli karbon kaynaklarının kullanılması ile daha ekonomik olarak üretilebileceği düşünülmektedir. Atık veya yan ürün olarak sıklıkla karşımıza çıkan gliserol ve ksiloz mikrobiyal lipitlerin düşük maliyetli üretimi için uygun karbon kaynakları arasında yer almaktadır. Bu çalışmada, yedi farklı maya türünden (Rhodotorula mucilaginosa, Wickerhamomyces anomalus, Saccharomyces cerevisiae, Clavispora lusitaniae, Pichia fermentans, P. cactophila, Yarrowia lipolytica) oluşan 12 maya izolatının tek karbon kaynağı olarak ksiloz veya gliserolü kullanma ve kimyasal olarak tanımlanmış bir ortamda lipit biriktirme yetenekleri karakterize edilmiştir. İzolatların tamamının test edilen üretim ortamlarında lipit üretme yeteneğine sahip olduğu belirlenmiştir. Ancak izolatlardan Y. lipolytica (%81.34) ve P. fermentans 1 (%79.11) ksiloz içeren fermentasyon ortamında, P. fermentans 2 (%98.90) ve Y. lipolytica (%94.62) ise gliserol içeren fermentasyon ortamında en yüksek lipit miktarı elde edilen türlerdir. Her iki üretim ortamında da lipit miktarında en yüksek sonuçlar Y. lipolytica izolatı ile elde edilmiştir. Sonuçlar, tüm izolatların gliserol ve ksiloz üzerinde büyüme kabiliyetine sahip olduğunu ve özellikle Y. lipolytica'nın ikinci nesil biyodizel üretimi için kullanım potansiyeline sahip olduğunu göstermektedir.

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG, 2011. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol, 90: 1219-1227.
  • Areesirisuk A, Yen TB, Chiu CH, Liu CH, Guo JH, 2015. Optimization on yeast lipid production of psuedozyma sp. with response surface methodology for biodiesel manufacturing. J. Adv. Agric. Technol., 2(1): 13-18.
  • Berikten D, Hoşgün EZ, Gökdal Otuzbiroğlu A, Bozan B, Kıvanç M, 2021. Lipid Production from Crude Glycerol by Newly Isolated Oleaginous Yeasts: Strain Selection, Molecular Identification and Fatty Acid Analysis. Waste Biomass Valor., 12: 5461–5470.
  • Chang YH, Chang KS, Hsu CL, Chuang LT, Chen CY, Huang FY, Jang HD, 2013. A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel, 105: 711-717.
  • Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S, 2020. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol Lett., 1;367(10): fnaa063.
  • Díaz-Fernández D, Aguiar TQ, Martín VI, Romaní A, Silva R, Domingues L, Revuelta JL, Jiménez A, 2019. Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. Bioresource technology, 293: 122054.
  • Doan HT, Nguyen PTM, Tran TT, Nguyen TK, Tran MD, Nguyen DB, 2021. Optimizing lime pretreatment of rice straw for biolipid production using oleaginous microorganisms. Chemosphere, 269: 129390.
  • Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G, 2007. Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb. Technol. 40: 1321–1327.
  • Filippousi R, Antoniou D, Tryfinopoulou P, Nisiotou AA, Nychas GJ, Koutinas AA, Papanikolaou S, 2019. Isolation, identification and screening of yeasts towards their ability to assimilate biodiesel‐derived crude glycerol: microbial production of polyols, endopolysaccharides and lipid. J. Appl. Microbiol. 127(4): 1080-1100.
  • Hashem AH, Suleiman WB, Abu-Elrish GM, El-Sheikh HH, 2021. Consolidated Bioprocessing of Sugarcane Bagasse to Microbial Oil by Newly Isolated Oleaginous Fungus: Mortierella wolfii. Arabian Journal for Science and Engineering, 46(1): 199-211.
  • Kitcha S, Cheirsilp B, 2011. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as carbon source. Energy Procedia, 9: 274-282.
  • Leiva-Candia DE, Tsakona S, Kopsahelis N, Garcia IL, Papanikolaou S, Dorado MP, Koutinas AA, 2015. Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresour Technol., 190: 57–65.
  • Li S, Feng S, Li Z, Xu H, Yu Y, Qiao D, Cao Y, 2011. Isolation, identification and characterization of oleaginous fungi from the soil of Qinghai Plateau that utilize D-xylose. African Journal of Microbiology Research, 5(15): 2075-2081.
  • Liu L, Hu Y, Lou W, Li N, Wu H, Zong M, 2017. Use of crude glycerol as sole carbon source for microbial lipid production by oleaginous yeasts. Appl. Biochem. Biotechnol., 182: 495–510.
  • Ma Y, Gao Z, Wang Q, Liu Y, 2018. Biodiesels from microbial oils: opportunity and challenges. Bioresource technology, 263: 631-641.
  • Maina S, Pateraki C, Kopsahelis N, Paramithiotis S, Drosinos EH, Papanikolaou S, Koutinas AA, 2017. Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Eng Life Sci., 17: 333–344.
  • Miao Z, Tian X, Liang W, He Y, Wang G, 2020. Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production. Renewable Energy, 161: 91-97.
  • Pan LX, Yang DF, Shao L, Li W, Chen GG, Liang ZQ, 2009. Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food technology and Biotechnology, 47(2): 215-220.
  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T, 2011. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem., 46: 210–218.
  • Sestric R, Munch G, Cicek N, Sparling R, Levin DB, 2014. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresour. Technol., 164: 41–46.
  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, 2008. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. laboratory analytical procedure (LAP), Technical Report NREL/TP-510-42623.
  • Sriwongchai S, Pokethitiyook P, Kruatrachue M, Bajwa KP, Lee H, 2013. Screenıng of selected oleaginous yeasts for lipid production from glycerol and some factors which affect lipid production by Yarrowia lipolytica strains. Journal of Microbiology. Biotechnology and Food Sciences, 2(5): 2344-2348.
  • Taccari M, Canonico L, Comitini F, Mannazzu I, Ciani M, 2012. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour. Technol., 110: 488-495.
  • Thanapimmetha A, Peawsuphon N, Chisti Y, Saisriyoot M, Srinophakun P, 2019. Lipid production by the yeast Lipomyces starkeyi grown on sugars and oil palm empty fruit bunch hydrolysate. Biomass Conversion and Biorefinery, 209715996: 1-14.
  • Yamada R, Yamauchi A, Kashihara T, Ogino H, 2017. Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochemical Engineering Journal, 128: 76-82.

Determination of Lipid Production Capacities of Various Yeasts in Xylose and Glycerol Media

Year 2022, , 142 - 151, 01.03.2022
https://doi.org/10.21597/jist.1034410

Abstract

Biodiesel attracts attention as an alternative and environmentally friendly fuel to fossil fuels. It is thought that biodiesel can be produced more economically by using sustainable and low-cost carbon sources from microbial oils. Glycerol and xylose, which are frequently encountered as waste materials or by-products, are suitable carbon sources for the low-cost production of microbial lipids. 12 yeast isolates from seven yeast species (Rhodotorula mucilaginosa, Wickerhamomyces anomalus, Saccharomyces cerevisiae, Clavispora lusitaniae, Pichia fermentans, P. cactophila, Yarrowia lipolytica) were characterized for their ability to use xylose or glycerol as the sole carbon source and to accumulate lipid in a chemically defined medium. All of the isolates were found to be capable of producing lipids in the production mediums tested. However, Y. lipolytica (81.34%) and P. fermentans 1 (79.11%) of the isolates are the species with the highest lipid content in fermentation medium containing xylose, and P. fermentans 2 (98.90%) and Y. lipolytica (94.62%) in fermentation medium containing glycerol. obtained species. In both production media, the highest results in lipid content were obtained with Y. lipolytica isolate. The results showed that all isolates have the ability to grow on glycerol and xylose, and especially Y. lipolytica has the potential to be used for second generation biodiesel production.

References

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG, 2011. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol, 90: 1219-1227.
  • Areesirisuk A, Yen TB, Chiu CH, Liu CH, Guo JH, 2015. Optimization on yeast lipid production of psuedozyma sp. with response surface methodology for biodiesel manufacturing. J. Adv. Agric. Technol., 2(1): 13-18.
  • Berikten D, Hoşgün EZ, Gökdal Otuzbiroğlu A, Bozan B, Kıvanç M, 2021. Lipid Production from Crude Glycerol by Newly Isolated Oleaginous Yeasts: Strain Selection, Molecular Identification and Fatty Acid Analysis. Waste Biomass Valor., 12: 5461–5470.
  • Chang YH, Chang KS, Hsu CL, Chuang LT, Chen CY, Huang FY, Jang HD, 2013. A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel, 105: 711-717.
  • Diamantopoulou P, Filippousi R, Antoniou D, Varfi E, Xenopoulos E, Sarris D, Papanikolaou S, 2020. Production of added-value microbial metabolites during growth of yeast strains on media composed of biodiesel-derived crude glycerol and glycerol/xylose blends. FEMS Microbiol Lett., 1;367(10): fnaa063.
  • Díaz-Fernández D, Aguiar TQ, Martín VI, Romaní A, Silva R, Domingues L, Revuelta JL, Jiménez A, 2019. Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. Bioresource technology, 293: 122054.
  • Doan HT, Nguyen PTM, Tran TT, Nguyen TK, Tran MD, Nguyen DB, 2021. Optimizing lime pretreatment of rice straw for biolipid production using oleaginous microorganisms. Chemosphere, 269: 129390.
  • Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G, 2007. Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb. Technol. 40: 1321–1327.
  • Filippousi R, Antoniou D, Tryfinopoulou P, Nisiotou AA, Nychas GJ, Koutinas AA, Papanikolaou S, 2019. Isolation, identification and screening of yeasts towards their ability to assimilate biodiesel‐derived crude glycerol: microbial production of polyols, endopolysaccharides and lipid. J. Appl. Microbiol. 127(4): 1080-1100.
  • Hashem AH, Suleiman WB, Abu-Elrish GM, El-Sheikh HH, 2021. Consolidated Bioprocessing of Sugarcane Bagasse to Microbial Oil by Newly Isolated Oleaginous Fungus: Mortierella wolfii. Arabian Journal for Science and Engineering, 46(1): 199-211.
  • Kitcha S, Cheirsilp B, 2011. Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as carbon source. Energy Procedia, 9: 274-282.
  • Leiva-Candia DE, Tsakona S, Kopsahelis N, Garcia IL, Papanikolaou S, Dorado MP, Koutinas AA, 2015. Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresour Technol., 190: 57–65.
  • Li S, Feng S, Li Z, Xu H, Yu Y, Qiao D, Cao Y, 2011. Isolation, identification and characterization of oleaginous fungi from the soil of Qinghai Plateau that utilize D-xylose. African Journal of Microbiology Research, 5(15): 2075-2081.
  • Liu L, Hu Y, Lou W, Li N, Wu H, Zong M, 2017. Use of crude glycerol as sole carbon source for microbial lipid production by oleaginous yeasts. Appl. Biochem. Biotechnol., 182: 495–510.
  • Ma Y, Gao Z, Wang Q, Liu Y, 2018. Biodiesels from microbial oils: opportunity and challenges. Bioresource technology, 263: 631-641.
  • Maina S, Pateraki C, Kopsahelis N, Paramithiotis S, Drosinos EH, Papanikolaou S, Koutinas AA, 2017. Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Eng Life Sci., 17: 333–344.
  • Miao Z, Tian X, Liang W, He Y, Wang G, 2020. Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production. Renewable Energy, 161: 91-97.
  • Pan LX, Yang DF, Shao L, Li W, Chen GG, Liang ZQ, 2009. Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food technology and Biotechnology, 47(2): 215-220.
  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T, 2011. Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem., 46: 210–218.
  • Sestric R, Munch G, Cicek N, Sparling R, Levin DB, 2014. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresour. Technol., 164: 41–46.
  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, 2008. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. laboratory analytical procedure (LAP), Technical Report NREL/TP-510-42623.
  • Sriwongchai S, Pokethitiyook P, Kruatrachue M, Bajwa KP, Lee H, 2013. Screenıng of selected oleaginous yeasts for lipid production from glycerol and some factors which affect lipid production by Yarrowia lipolytica strains. Journal of Microbiology. Biotechnology and Food Sciences, 2(5): 2344-2348.
  • Taccari M, Canonico L, Comitini F, Mannazzu I, Ciani M, 2012. Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour. Technol., 110: 488-495.
  • Thanapimmetha A, Peawsuphon N, Chisti Y, Saisriyoot M, Srinophakun P, 2019. Lipid production by the yeast Lipomyces starkeyi grown on sugars and oil palm empty fruit bunch hydrolysate. Biomass Conversion and Biorefinery, 209715996: 1-14.
  • Yamada R, Yamauchi A, Kashihara T, Ogino H, 2017. Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochemical Engineering Journal, 128: 76-82.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Derya Berikten 0000-0002-8672-4813

Emir Zafer Hoşgün 0000-0002-3810-701X

Publication Date March 1, 2022
Submission Date December 8, 2021
Acceptance Date January 21, 2022
Published in Issue Year 2022

Cite

APA Berikten, D., & Hoşgün, E. Z. (2022). Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi. Journal of the Institute of Science and Technology, 12(1), 142-151. https://doi.org/10.21597/jist.1034410
AMA Berikten D, Hoşgün EZ. Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi. J. Inst. Sci. and Tech. March 2022;12(1):142-151. doi:10.21597/jist.1034410
Chicago Berikten, Derya, and Emir Zafer Hoşgün. “Ksiloz Ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 142-51. https://doi.org/10.21597/jist.1034410.
EndNote Berikten D, Hoşgün EZ (March 1, 2022) Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi. Journal of the Institute of Science and Technology 12 1 142–151.
IEEE D. Berikten and E. Z. Hoşgün, “Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi”, J. Inst. Sci. and Tech., vol. 12, no. 1, pp. 142–151, 2022, doi: 10.21597/jist.1034410.
ISNAD Berikten, Derya - Hoşgün, Emir Zafer. “Ksiloz Ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology 12/1 (March 2022), 142-151. https://doi.org/10.21597/jist.1034410.
JAMA Berikten D, Hoşgün EZ. Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi. J. Inst. Sci. and Tech. 2022;12:142–151.
MLA Berikten, Derya and Emir Zafer Hoşgün. “Ksiloz Ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 142-51, doi:10.21597/jist.1034410.
Vancouver Berikten D, Hoşgün EZ. Ksiloz ve Gliserol Ortamlarında Çeşitli Mayaların Lipit Üretim Kapasitelerinin Belirlenmesi. J. Inst. Sci. and Tech. 2022;12(1):142-51.