Research Article
BibTex RIS Cite

Wide-Angle, Low Profile Hybrit Metasurface Polarization Converter for Ku Band Application

Year 2022, , 680 - 691, 01.06.2022
https://doi.org/10.21597/jist.1060148

Abstract

In this study, metasurface based reflective linear and circular polarization converter was aimed for microwave Ku band applications. The proposed microwave device provides linear to linear polarization conversion in the x direction by reflecting the incoming wave polarized in the y direction of the electric field intensity. For this purpose, the proposed metasurface polarization converter works in the 12 GHz-18 GHz range with a 90% polarization conversion ratio (PCR) performance. In addition, the proposed design performs right-handed polarization conversion in the range of 11.01-11.19 GHz and in the range of 20.79-22.08 GHz. The proposed design was designed with easily accessible FR-4 material, and copper was chosen as the metal for the metasurface and metal termination. The oblique angle performance of the designed device works with 80% polarization conversion rate performance up to 50 degrees. In order to understand the physical mechanism of the microwave device, surface current analysis was investigated in strong resonance regions. In addition, the equivalent circuit approach and the microwave transmission line model are shown for a better understanding of the physical mechanism. The proposed design was designed with a CST microwave simulator and fabricated with conventional PCB techniques for real-time application. To verify the simulation results, the real-time measurements of the produced device were experimentally verified using free space measurements. The results were compared with the studies in the literature and compared to other Ku band polarization converters in the literature, it provides not only linear conversion but also circular polarization. In addition, the manufactured design consist of FR4 material, which is a more accessible material compared to other Ku band applications in the literature

References

  • Chen HT, Taylor AJ, Yu N, 2016. A review of Metasurfaces: Physics and Applications. Reports on Progress in Physics, 79 (7): 076401.
  • Chen HY, Wang JF, Ma H, Qu SB, Zhang JQ, Xu Z, Zhang AX, 2015. Broadband Perfect Polarization Conversion Metasurfaces. Chinese Physics B, 24 (1): 014201.
  • Dutta R, Mitra D, Ghosh J, 2020. Dual Band Multifunctional Metasurface for Absorption and Polarization Conversion. International Journal of RF and Microwave Computer-Aided Engineering, 30 (7): 1-8.
  • Fahad AK, Ruan C, Ali S, Nazir R, Haq TU, Ullah S, He W, 2020. Triple-Wide-Band Ultra-Thin Metasheet for Transmission Polarization Conversion. Sci Rep, 10 (1): 8810.
  • Fahad AK, Ruan C, Nazir R, Haq TU, He W, 2020. Dual-Band Ultrathin Meta-Array for Polarization Conversion in Ku/Ka-Band With Broadband Transmission. IEEE Antennas and Wireless Propagation Letters, 19 (5): 856-860. Kamal B, Chen J, Yin Y, Ren J, Ullah S, Khan B, 2021. Broad-Band and Broad-Angle Linear and Circular Polarization Converting Metasurface. Journal of Electromagnetic Waves and Applications, inpress: 1-11.
  • Khan MI, Khalid Z, Tahir FA, 2019. Linear and Circular-Polarization Conversion in X-band Using Anisotropic Metasurface. Sci Rep, 9 (1): 4552.
  • Kundtz N, Smith DR, 2010. Extreme-Angle Broadband Metamaterial Lens. Nat Mater, 9 (2): 129-132.
  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ, 2008. Perfect metamaterial absorber. Phys Rev Lett, 100 (20): 207402.
  • Mutlu M, Ozbay E, 2012. A Transparent 90° Polarization Rotator by Combining Chirality and Electromagnetic Wave Tunneling. Applied Physics Letters, 100 (5): 051909.
  • Nguyen TQH, Nguyen TKT, Nguyen TQM, Cao TN, Phan HL, Luong NM, Vu DL, 2021. Simple Design of a Wideband and Wide-Angle Reflective Linear Polarization Converter Based on Crescent-Shaped Metamaterial for Ku-Band Applications. Optics Communications, 486:126773.
  • Papas CH, 1965. Theory of Electromagnetic Wave Propagation. Dover Publications, No:2, s.118-126, New York-ABD.
  • Pouyanfar N, Nourinia J, Ghobadi C, 2021. Multiband and multifunctional polarization converter using an asymmetric metasurface. Sci Rep, 11 (1): 9306.
  • Qi Y, Zhang B, Liu C, Deng X, 2020. Ultra-Broadband Polarization Conversion Meta-Surface and its Application in Polarization Converter and RCS Reduction. IEEE Access, 8: 116675-116684.
  • Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR, 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314 (5801): 977-980.
  • UrRahman S, Amin F, Ahmed A, Yi W, Cao Q, 2020. Comment on “A Novel Ultrathin Wideband Metamaterial Absorber for X-Band Applications”. Journal of Electromagnetic Waves and Applications, 34 (4): 462-467.
  • Wang H, Prasad SV, Mitchell A, Rosengarten G, Phelan P, Wang L, 2015. Highly Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting. Solar Energy Materials and Solar Cells, 137: 235-242.
  • Withayachumnankul W, Jaruwongrungsee K, Tuantranont A, Fumeaux C, Abbott D, 2013. Metamaterial Based Microfluidic Sensor for Dielectric Characterization. Sensors and Actuators A: Physical, 189: 233-237.
  • Yang X, Ding Z, Zhang Z, 2021. Broadband Linear Polarization Conversion Across Complete Ku Band Based on Ultrathin Metasurface. AEU - International Journal of Electronics and Communications, 138:153884.
  • Zhao J, Cheng Y, 2016. A High-Efficiency and Broadband Reflective 90° Linear Polarization Rotator Based on Anisotropic Metamaterial. Applied Physics B, 122 (10): 1-7.
  • Fang C, Cheng Y, He Z, Zhao J, Gong R, 2017. , Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface. Optik, 137: 148-155.
  • Zheng Q, Guo C, Li H, Ding J, 2018. Broadband radar cross-section reduction using polarization conversion metasurface. International Journal of Microwave and Wireless Technologies, 10 (2): 197-206.

Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü

Year 2022, , 680 - 691, 01.06.2022
https://doi.org/10.21597/jist.1060148

Abstract

Bu çalışmada mikrodalga Ku bandı uygulamaları için metayüzey bazlı yansıtıcı lineer ve dairesel polarizasyon dönüştürücü amaçlandı. Önerilen mikrodalga aygıt, elektrik alan şiddeti y yönünde polarize gelen dalgayı x yönünde yansıtarak lineerden lineere polarizasyon dönüşümü sağlamaktadır. Bu amaçla önerilen metayüzey polarizasyon dönüştürücü 12 GHz-18 GHz aralığında %90 polarizasyon dönüşümü oranı (PCR) performansı ile çalışmaktadır. Ayrıca önerilen dizayn 11.01-11.19 GHz aralığında ve 20.79-22.08 GHz aralığında sağ elli polarizasyon dönüşümü gerçekleştirmektedir. Önerilen dizayn kolay erişilebilir FR-4 malzemesi ile dizayn edilmiş olunup, metayüzey ve metal sonlandırma için metal olarak bakır seçilmiştir. Tasarlanan aygıtın eğik açı performansı 50 dereceye kadar %80 polarizasyon dönüşüm oranı performansı ile çalışmaktadır. Mikrodalga aygıtın fiziksel mekanizmasının anlaşılması için yüzey akım analizi güçlü rezonans bölgelerinde incelendi. Ayrıca fiziksel mekanizmasının daha iyi anlaşılması için eşdeğer devre yaklaşımı ile mikrodalga iletim hattı modeli gösterildi. Önerilen dizayn CST mikrodalga simülatörü ile dizayn edildi ve gerçek zamanlı uygulaması için geleneksel PCB teknikleri ile üretildi. Simulasyon sonuçlarının doğrulaması için üretilen aygıtın gerçek zamanlı ölçümleri serbest uzay ölçümleri kullanılarak deneysel olarak doğrulandı. Sonuçlar literatürde yer alan çalışmalarla kıyaslanıldı ve literatürde yer alan diğer Ku bandı polarizasyon dönüştürücülere kıyasla sadece lineer dönüşüm sağlamayıp aynı zamanda dairesel polarizasyon da sağlamaktadır. Ayrıca üretilen dizayn literatürde yer alan diğer Ku band uygulamalara kıyasla daha kolay erişilebilir materyal olan FR4 material ile dizayn edilmiştir.

References

  • Chen HT, Taylor AJ, Yu N, 2016. A review of Metasurfaces: Physics and Applications. Reports on Progress in Physics, 79 (7): 076401.
  • Chen HY, Wang JF, Ma H, Qu SB, Zhang JQ, Xu Z, Zhang AX, 2015. Broadband Perfect Polarization Conversion Metasurfaces. Chinese Physics B, 24 (1): 014201.
  • Dutta R, Mitra D, Ghosh J, 2020. Dual Band Multifunctional Metasurface for Absorption and Polarization Conversion. International Journal of RF and Microwave Computer-Aided Engineering, 30 (7): 1-8.
  • Fahad AK, Ruan C, Ali S, Nazir R, Haq TU, Ullah S, He W, 2020. Triple-Wide-Band Ultra-Thin Metasheet for Transmission Polarization Conversion. Sci Rep, 10 (1): 8810.
  • Fahad AK, Ruan C, Nazir R, Haq TU, He W, 2020. Dual-Band Ultrathin Meta-Array for Polarization Conversion in Ku/Ka-Band With Broadband Transmission. IEEE Antennas and Wireless Propagation Letters, 19 (5): 856-860. Kamal B, Chen J, Yin Y, Ren J, Ullah S, Khan B, 2021. Broad-Band and Broad-Angle Linear and Circular Polarization Converting Metasurface. Journal of Electromagnetic Waves and Applications, inpress: 1-11.
  • Khan MI, Khalid Z, Tahir FA, 2019. Linear and Circular-Polarization Conversion in X-band Using Anisotropic Metasurface. Sci Rep, 9 (1): 4552.
  • Kundtz N, Smith DR, 2010. Extreme-Angle Broadband Metamaterial Lens. Nat Mater, 9 (2): 129-132.
  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ, 2008. Perfect metamaterial absorber. Phys Rev Lett, 100 (20): 207402.
  • Mutlu M, Ozbay E, 2012. A Transparent 90° Polarization Rotator by Combining Chirality and Electromagnetic Wave Tunneling. Applied Physics Letters, 100 (5): 051909.
  • Nguyen TQH, Nguyen TKT, Nguyen TQM, Cao TN, Phan HL, Luong NM, Vu DL, 2021. Simple Design of a Wideband and Wide-Angle Reflective Linear Polarization Converter Based on Crescent-Shaped Metamaterial for Ku-Band Applications. Optics Communications, 486:126773.
  • Papas CH, 1965. Theory of Electromagnetic Wave Propagation. Dover Publications, No:2, s.118-126, New York-ABD.
  • Pouyanfar N, Nourinia J, Ghobadi C, 2021. Multiband and multifunctional polarization converter using an asymmetric metasurface. Sci Rep, 11 (1): 9306.
  • Qi Y, Zhang B, Liu C, Deng X, 2020. Ultra-Broadband Polarization Conversion Meta-Surface and its Application in Polarization Converter and RCS Reduction. IEEE Access, 8: 116675-116684.
  • Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR, 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314 (5801): 977-980.
  • UrRahman S, Amin F, Ahmed A, Yi W, Cao Q, 2020. Comment on “A Novel Ultrathin Wideband Metamaterial Absorber for X-Band Applications”. Journal of Electromagnetic Waves and Applications, 34 (4): 462-467.
  • Wang H, Prasad SV, Mitchell A, Rosengarten G, Phelan P, Wang L, 2015. Highly Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting. Solar Energy Materials and Solar Cells, 137: 235-242.
  • Withayachumnankul W, Jaruwongrungsee K, Tuantranont A, Fumeaux C, Abbott D, 2013. Metamaterial Based Microfluidic Sensor for Dielectric Characterization. Sensors and Actuators A: Physical, 189: 233-237.
  • Yang X, Ding Z, Zhang Z, 2021. Broadband Linear Polarization Conversion Across Complete Ku Band Based on Ultrathin Metasurface. AEU - International Journal of Electronics and Communications, 138:153884.
  • Zhao J, Cheng Y, 2016. A High-Efficiency and Broadband Reflective 90° Linear Polarization Rotator Based on Anisotropic Metamaterial. Applied Physics B, 122 (10): 1-7.
  • Fang C, Cheng Y, He Z, Zhao J, Gong R, 2017. , Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface. Optik, 137: 148-155.
  • Zheng Q, Guo C, Li H, Ding J, 2018. Broadband radar cross-section reduction using polarization conversion metasurface. International Journal of Microwave and Wireless Technologies, 10 (2): 197-206.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Gökhan Öztürk 0000-0001-8106-0053

Fatih Tutar 0000-0003-0668-3319

Mustafa Bulut 0000-0001-8251-4387

Publication Date June 1, 2022
Submission Date January 19, 2022
Acceptance Date March 12, 2022
Published in Issue Year 2022

Cite

APA Öztürk, G., Tutar, F., & Bulut, M. (2022). Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Journal of the Institute of Science and Technology, 12(2), 680-691. https://doi.org/10.21597/jist.1060148
AMA Öztürk G, Tutar F, Bulut M. Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Iğdır Üniv. Fen Bil Enst. Der. June 2022;12(2):680-691. doi:10.21597/jist.1060148
Chicago Öztürk, Gökhan, Fatih Tutar, and Mustafa Bulut. “Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü”. Journal of the Institute of Science and Technology 12, no. 2 (June 2022): 680-91. https://doi.org/10.21597/jist.1060148.
EndNote Öztürk G, Tutar F, Bulut M (June 1, 2022) Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Journal of the Institute of Science and Technology 12 2 680–691.
IEEE G. Öztürk, F. Tutar, and M. Bulut, “Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 2, pp. 680–691, 2022, doi: 10.21597/jist.1060148.
ISNAD Öztürk, Gökhan et al. “Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü”. Journal of the Institute of Science and Technology 12/2 (June 2022), 680-691. https://doi.org/10.21597/jist.1060148.
JAMA Öztürk G, Tutar F, Bulut M. Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:680–691.
MLA Öztürk, Gökhan et al. “Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü”. Journal of the Institute of Science and Technology, vol. 12, no. 2, 2022, pp. 680-91, doi:10.21597/jist.1060148.
Vancouver Öztürk G, Tutar F, Bulut M. Ku Band Uygulamalar İçin Geniş Açı, Basit Dizayn Hibrit Metayüzey Polarizasyon Dönüştürücü. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(2):680-91.