Research Article
BibTex RIS Cite

Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu

Year 2022, , 1743 - 1757, 01.09.2022
https://doi.org/10.21597/jist.1107255

Abstract

Bu çalışmada önce 2-aminobenzilamin ile keton türevi olan 1'-hidroksi-2'-asetonaftonun kondenzasyonundan monoimin bileşiği (H3A) sentezlenmiştir. Elde edilen H3A ile 5-bromosalisilaldehitin kondenzasyonu sonucu asimetrik Schiff bazı (H2L) sentezlenmiştir. Daha sonra sentezlenen H2L bileşiğinin Cu(II), Ni(II), Co(II) ve Fe(III) komplekslerinin sentezi ve karakterizasyonu gerçekleştirilmiştir. Schiff bazı ve metal komplekslerinin yapıları analitik ve spektroskopik yöntemler (UV-Vis, FT-IR, elementel, 13C ve 1H NMR, LC-MS, ICP-AES, manyetik suseptibilite, molar iletkenlik ve TG-DTA) kullanılarak aydınlatılmıştır

Supporting Institution

TÜBİTAK

Project Number

112T305

Thanks

Bu çalışma TÜBİTAK 112T305 nolu proje tarafından desteklenmiştir.

References

  • Beyazit N, Çakmak D, Demetgül C, 2017. Chromone-based Schiff base metal complexes as catalysts for catechol oxidation: Synthesis, kinetics and electrochemical studies. Tetrahedron, 73(19): 2774-2779.
  • Bhunia P, Maity S, Mayans J, Ghosh A, 2022. Templated synthesis of Ni(İİ) complexes of unsymmetrical Schiff base ligands derived from 1,3-diamino-2-propanol: structural diversity and magnetic properties. New Journal of Chemistry, 46: 4363-4372.
  • Chattopadhyay S, Bocelli G, Cantoni A, Ghosh A, 2006. 4’-formilbenzo-15-taç-5 türevlerinin ve komplekslerinin sentezi. Inorganic Chemica Acta, 359: 4441-4446.
  • Demetgül C, Deletioğlu D, Karaca F, Yalçınkaya S, Timur M, Serin S, 2010. Synthesis and characterization of a Schiff base derived from 2-aminobenzylamine and its Cu(II) complex: electropolymerization of the complex on a platinum electrode. Journal of Coordination Chemistry, 63(12): 2181-2191.
  • Demetgül C, Delikanlı A, Sarıbıyık OY, Karakaplan M, Serin S, 2012. Schiff base polymers obtained by oxidative polycondensation and their Co(II), Mn(II) and Ru(III) complexes: Synthesis, characterization and catalytic activity in epoxidation of styrene. Designed Monomers and Polymers, 15: 75–91.
  • Demetgül C, Karakaplan M, Serin S, Dığrak M, 2009. Synthesis, characterization, and biological properties of Ni(II), Co(II), and Cu(II) complexes of Schiff bases derived from 4-aminobenzylamine. Journal of Coordination Chemistry, 62: 3544-355.
  • Dhasarathan S, Shunmugaperumal S, Selvaraj KP, 2022. Exploration of role of concentration on sensing activities using novel unsymmetrical Schiff bases. Journal of the Turkish Chemical Society Section A: Chemistry, 9(2): 465-478.
  • Fatemeh B, Abolfazl O, 2016. A novel approach toward the synthesis of some new tridentate Schiff bases from anil-like compounds. Journal of the Serbian Chemical Society, 81(10): 1111-1119.
  • Gowri S, Muthukumar M, Krishnaraj S, Viswanathamurthi P, Prabhakaran R, Natarajan K, 2010. Ruthenium(II) unsymmetrical N2O2 tetradentate Schiff-base complexes: synthesis, characterization, and catalytic studies. Journal of Coordination Chemistry, 63:524-533.
  • Khalil SME, Taha A, El-Hameed FSM, 1997. A novel type half-unit Schiff base ligand, 3-[oAminophenyliminomethyl]-4-hydroxy-6-methyl-2-(1H)-quinolone and its metal complexes. Part IV. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27(6): 887-906.
  • Kleij AW, 2009. Nonsymmetrical salen ligands and their complexes: Synthesis and applications. European Journal of Inorganic Chemistry, 2:193-205.
  • Mikhailov A, Komarov VY, Sukhikh A, Pishchur D, Schaniel D, Kostin G, 2020. The impact of counterion on the metastable state properties of nitrosyl ruthenium complexes. New Journal of Chemistry, Royal Society of Chemistry. 44 (41): 8014-18024.
  • Nejo AA, Kolawole GA, Opoku AR, Muller C, Wolowska J, 2009. Synthesis, characterization, and insulin-enhancing studies of unsymmetrical tetradentate Schiff-base complexes of oxovanadium(IV). Journal of Coordination Chemistry, 62:3411-3424.
  • Nguyen QT, Thi PNP, Nguyen VT, 2021. Synthesis, characterization, and in vitro cytotoxicity of unsymmetrical tetradentate Schiff base Cu(II) and Fe(III) complexes. Bioinorganic Chemistry and Applications, 2021: Article ID 6696344.
  • Nirmal R, Prakash CR, Meenakshi K, Shanmugapandiyan P, 2010. Synthesis and Pharmacological Evaluation of Novel Schiff Base Analogues of 3-(4-amino) phenylimino) 5-fluoroindolin-2-one. Journal of Young Pharmacists, 2: 162-168.
  • Pandeya SN, Sriram D, Nath G, De Clercq E, 1999. Synthesis, antibacterial, antifungal and anti-hıv activities of schiff and mannich bases derived from isatin derivatives and N-[4-(4'-chlorophenyl)thiazol-2-yl] thiosemicarbazide. European Journal of Pharmaceutical Sciences, 9: 25-31.
  • Patil M, Hunoor R, Gudasi K, 2010. Transition metal complexes of a new hexadentate macroacyclic N2O4-donor Schiff base: inhibitory activity against bacteria and fungi. European Journal of Medicinal Chemistry, 45: 2981-2986.
  • Pessoa JC, Correia I, 2019. Salan vs. salen metal complexes in catalysis and medicinal applications: virtues and pitfalls. Coordination Chemistry Reviews, 388: 227–247.
  • Ramesh G, Daravath S, Swathi M, Sumalatha V, Shankar DS, 2020. Investigation on Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from quadridentate salen-type Schiff base: structural characterization, DNA interactions, antioxidant proficiency and biological evaluation. Chemical Data Collections, 28: Article ID 100434.
  • Sevgi F, Bagkesici U, Kursunlu AN, Guler E, 2018. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity. Journal of Molecular Structure, 1154: 256–260.
  • Shukla SN, Gaur P, Raidas ML, Chaurasia B, 2020. Tailored synthesis of unsymmetrical tetradentate ONNO schiff base complexes of Fe(III), Co(II) and Ni(II): spectroscopic characterization, DFT optimization, oxygen-binding study, antibacterial and anticorrosion activity. Journal of Molecular Structure, 1202: Article ID 127362.
  • Shweta S, 2021. Synthesis, spectroscopic studies and pesticidal activity of transition metal complexes with unsymmetrical Schiff base. Indian Journal of Biochemistry & Biophysics, 58: 565-571.
  • Szklarzewicz J, Jurowska A, Hodorowicz M, Gryboś R, Kruczała K, Głuch-Lutwin M, Kazek G, 2020. Vanadium complexes with salicylaldehyde-based Schiff base ligands structure, properties and biological activity. Journal of Coordination Chemistry, 73(6): 986-1008.
  • Tümer M, Çelik C, Köksal H, Serin S, 1999. Transition metal complexes of bidentate Schiff base ligands. Transition Metal Chemistry. 24: 525-532.
  • Yalçınkaya S, Çakmak D, 2021. Immobilization of CoII‐(N, N′‐bis (salicylidene)‐2‐aminobenzylamine) on poly(pyrrole‐co‐o‐anisidine)/chitosan composite films: Application to electrocatalytic oxidation of catechol. Electroanalysis, 33(3): 755-765.

Synthesis and Characterization of Unsymmetrical Schiff Base and Transitıon Metal Complexes

Year 2022, , 1743 - 1757, 01.09.2022
https://doi.org/10.21597/jist.1107255

Abstract

In this study, firstly, monoimine compound (H3A) was synthesized from the condensation of 2-aminobenzylamine and 1’-hydroxy-2-acetonaphthone which is a ketone derivative. Asymmetric Schiff base (H2L) was synthesized as a result of the condensation of the obtained H3A and 5-bromosalicylaldehyde. After that, the synthesis and characterization of the Cu(II), Ni(II), Co(II) and Fe(III) complexes of the synthesized H2L compound were carried out. The proposed structures of Schiff bases and its metal complexes were elucidated using analytical and spectroscopic (UV-Vis, FT-IR, elemental, 13C and 1H NMR, LC-MS, ICP-AES, magnetic susceptibility, molar conductivity, and TG-DTA) methods.

Project Number

112T305

References

  • Beyazit N, Çakmak D, Demetgül C, 2017. Chromone-based Schiff base metal complexes as catalysts for catechol oxidation: Synthesis, kinetics and electrochemical studies. Tetrahedron, 73(19): 2774-2779.
  • Bhunia P, Maity S, Mayans J, Ghosh A, 2022. Templated synthesis of Ni(İİ) complexes of unsymmetrical Schiff base ligands derived from 1,3-diamino-2-propanol: structural diversity and magnetic properties. New Journal of Chemistry, 46: 4363-4372.
  • Chattopadhyay S, Bocelli G, Cantoni A, Ghosh A, 2006. 4’-formilbenzo-15-taç-5 türevlerinin ve komplekslerinin sentezi. Inorganic Chemica Acta, 359: 4441-4446.
  • Demetgül C, Deletioğlu D, Karaca F, Yalçınkaya S, Timur M, Serin S, 2010. Synthesis and characterization of a Schiff base derived from 2-aminobenzylamine and its Cu(II) complex: electropolymerization of the complex on a platinum electrode. Journal of Coordination Chemistry, 63(12): 2181-2191.
  • Demetgül C, Delikanlı A, Sarıbıyık OY, Karakaplan M, Serin S, 2012. Schiff base polymers obtained by oxidative polycondensation and their Co(II), Mn(II) and Ru(III) complexes: Synthesis, characterization and catalytic activity in epoxidation of styrene. Designed Monomers and Polymers, 15: 75–91.
  • Demetgül C, Karakaplan M, Serin S, Dığrak M, 2009. Synthesis, characterization, and biological properties of Ni(II), Co(II), and Cu(II) complexes of Schiff bases derived from 4-aminobenzylamine. Journal of Coordination Chemistry, 62: 3544-355.
  • Dhasarathan S, Shunmugaperumal S, Selvaraj KP, 2022. Exploration of role of concentration on sensing activities using novel unsymmetrical Schiff bases. Journal of the Turkish Chemical Society Section A: Chemistry, 9(2): 465-478.
  • Fatemeh B, Abolfazl O, 2016. A novel approach toward the synthesis of some new tridentate Schiff bases from anil-like compounds. Journal of the Serbian Chemical Society, 81(10): 1111-1119.
  • Gowri S, Muthukumar M, Krishnaraj S, Viswanathamurthi P, Prabhakaran R, Natarajan K, 2010. Ruthenium(II) unsymmetrical N2O2 tetradentate Schiff-base complexes: synthesis, characterization, and catalytic studies. Journal of Coordination Chemistry, 63:524-533.
  • Khalil SME, Taha A, El-Hameed FSM, 1997. A novel type half-unit Schiff base ligand, 3-[oAminophenyliminomethyl]-4-hydroxy-6-methyl-2-(1H)-quinolone and its metal complexes. Part IV. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 27(6): 887-906.
  • Kleij AW, 2009. Nonsymmetrical salen ligands and their complexes: Synthesis and applications. European Journal of Inorganic Chemistry, 2:193-205.
  • Mikhailov A, Komarov VY, Sukhikh A, Pishchur D, Schaniel D, Kostin G, 2020. The impact of counterion on the metastable state properties of nitrosyl ruthenium complexes. New Journal of Chemistry, Royal Society of Chemistry. 44 (41): 8014-18024.
  • Nejo AA, Kolawole GA, Opoku AR, Muller C, Wolowska J, 2009. Synthesis, characterization, and insulin-enhancing studies of unsymmetrical tetradentate Schiff-base complexes of oxovanadium(IV). Journal of Coordination Chemistry, 62:3411-3424.
  • Nguyen QT, Thi PNP, Nguyen VT, 2021. Synthesis, characterization, and in vitro cytotoxicity of unsymmetrical tetradentate Schiff base Cu(II) and Fe(III) complexes. Bioinorganic Chemistry and Applications, 2021: Article ID 6696344.
  • Nirmal R, Prakash CR, Meenakshi K, Shanmugapandiyan P, 2010. Synthesis and Pharmacological Evaluation of Novel Schiff Base Analogues of 3-(4-amino) phenylimino) 5-fluoroindolin-2-one. Journal of Young Pharmacists, 2: 162-168.
  • Pandeya SN, Sriram D, Nath G, De Clercq E, 1999. Synthesis, antibacterial, antifungal and anti-hıv activities of schiff and mannich bases derived from isatin derivatives and N-[4-(4'-chlorophenyl)thiazol-2-yl] thiosemicarbazide. European Journal of Pharmaceutical Sciences, 9: 25-31.
  • Patil M, Hunoor R, Gudasi K, 2010. Transition metal complexes of a new hexadentate macroacyclic N2O4-donor Schiff base: inhibitory activity against bacteria and fungi. European Journal of Medicinal Chemistry, 45: 2981-2986.
  • Pessoa JC, Correia I, 2019. Salan vs. salen metal complexes in catalysis and medicinal applications: virtues and pitfalls. Coordination Chemistry Reviews, 388: 227–247.
  • Ramesh G, Daravath S, Swathi M, Sumalatha V, Shankar DS, 2020. Investigation on Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from quadridentate salen-type Schiff base: structural characterization, DNA interactions, antioxidant proficiency and biological evaluation. Chemical Data Collections, 28: Article ID 100434.
  • Sevgi F, Bagkesici U, Kursunlu AN, Guler E, 2018. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity. Journal of Molecular Structure, 1154: 256–260.
  • Shukla SN, Gaur P, Raidas ML, Chaurasia B, 2020. Tailored synthesis of unsymmetrical tetradentate ONNO schiff base complexes of Fe(III), Co(II) and Ni(II): spectroscopic characterization, DFT optimization, oxygen-binding study, antibacterial and anticorrosion activity. Journal of Molecular Structure, 1202: Article ID 127362.
  • Shweta S, 2021. Synthesis, spectroscopic studies and pesticidal activity of transition metal complexes with unsymmetrical Schiff base. Indian Journal of Biochemistry & Biophysics, 58: 565-571.
  • Szklarzewicz J, Jurowska A, Hodorowicz M, Gryboś R, Kruczała K, Głuch-Lutwin M, Kazek G, 2020. Vanadium complexes with salicylaldehyde-based Schiff base ligands structure, properties and biological activity. Journal of Coordination Chemistry, 73(6): 986-1008.
  • Tümer M, Çelik C, Köksal H, Serin S, 1999. Transition metal complexes of bidentate Schiff base ligands. Transition Metal Chemistry. 24: 525-532.
  • Yalçınkaya S, Çakmak D, 2021. Immobilization of CoII‐(N, N′‐bis (salicylidene)‐2‐aminobenzylamine) on poly(pyrrole‐co‐o‐anisidine)/chitosan composite films: Application to electrocatalytic oxidation of catechol. Electroanalysis, 33(3): 755-765.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Halide Sinem Çakran 0000-0002-7633-1143

Cahit Demetgül 0000-0003-1559-7279

Project Number 112T305
Publication Date September 1, 2022
Submission Date April 21, 2022
Acceptance Date May 25, 2022
Published in Issue Year 2022

Cite

APA Çakran, H. S., & Demetgül, C. (2022). Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu. Journal of the Institute of Science and Technology, 12(3), 1743-1757. https://doi.org/10.21597/jist.1107255
AMA Çakran HS, Demetgül C. Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. September 2022;12(3):1743-1757. doi:10.21597/jist.1107255
Chicago Çakran, Halide Sinem, and Cahit Demetgül. “Asimetrik Schiff Bazı Ve Geçiş Metal Komplekslerinin Sentezi Ve Karakterizasyonu”. Journal of the Institute of Science and Technology 12, no. 3 (September 2022): 1743-57. https://doi.org/10.21597/jist.1107255.
EndNote Çakran HS, Demetgül C (September 1, 2022) Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu. Journal of the Institute of Science and Technology 12 3 1743–1757.
IEEE H. S. Çakran and C. Demetgül, “Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 3, pp. 1743–1757, 2022, doi: 10.21597/jist.1107255.
ISNAD Çakran, Halide Sinem - Demetgül, Cahit. “Asimetrik Schiff Bazı Ve Geçiş Metal Komplekslerinin Sentezi Ve Karakterizasyonu”. Journal of the Institute of Science and Technology 12/3 (September 2022), 1743-1757. https://doi.org/10.21597/jist.1107255.
JAMA Çakran HS, Demetgül C. Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1743–1757.
MLA Çakran, Halide Sinem and Cahit Demetgül. “Asimetrik Schiff Bazı Ve Geçiş Metal Komplekslerinin Sentezi Ve Karakterizasyonu”. Journal of the Institute of Science and Technology, vol. 12, no. 3, 2022, pp. 1743-57, doi:10.21597/jist.1107255.
Vancouver Çakran HS, Demetgül C. Asimetrik Schiff Bazı ve Geçiş Metal Komplekslerinin Sentezi ve Karakterizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(3):1743-57.