Research Article
BibTex RIS Cite

Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level

Year 2022, , 2113 - 2128, 01.12.2022
https://doi.org/10.21597/jist.1112545

Abstract

Polarizaton properties of ZnO well layers on BeMgZnO barrier layers grown in polar and semipolar orientations have been investigated. Cases of relaxed and strained barrier layers are considered. It is found that the polarizaton difference at the interfaces leads to a built-in electric field inside the well layer as much as 8 MV cm^(-1) in magnitude. Nonpolar ZnO/BeMgZnO quantum wells have been studied in terms of intersubband transitions. The calculations have covered Be and Mg concentrations up 0.18 and 0.5, respectively. It has been found that intersubband transition (ISBT) energies ranging from 50 to 700 meV are possible. The effect of barrier thickness on the ISBT energies has been studied. The results indicate insignificant changes in ISBT energies compared to the energies.

References

  • Ding K, Avrutin V, Izioumskaia N, Ullah MB, Özgür Ü, Morkoç H, 2018. Fabrication of Schottky Diodes on Zn-polar BeMgZnO/ZnO Heterostructure Grown by Plasma-Assisted Molecular Beam Epitaxy. Journal of Visualized Experiments, 140: 58113. doi:https://dx.doi.org/10.3791/58113
  • Duan Y, Qin L, Tang G, Shi L, 2008. First-Principles Study of Ground- and Metastable-State Properties of XO (X = Be, Mg, Ca, Sr, Ba, Zn and Cd). The European Physical Journal B, 66: 201-209. doi:https://doi.org/10.1140/epjb/e2008-00415-3
  • Duman S, Sütlü A, Bağcı S, Tütüncü HM, Srivastava GP, 2009. Structural, Elastic, Electronic, and Phonon Properties of Zinc-Blende and Wurtzite BeO. Journal of Applied Physics, 105: 033719. doi:https://doi.org/10.1063/1.3075814
  • Feezell D, Sharma Y, Krishna S, 2013. Optical Properties of Nonpolar III-Nitrides for Intersubband Photodetectors. Journal of Applied Physics, 113: 133103. doi:https://doi.org/10.1063/1.4798353
  • Grundmann M, Zúñiga-Pérez J, 2015. Pseudomorphic ZnO-Based Heterostructures: From Polar Through All Semipolar to Nonpolar Orientations. Physica Status Solidi B, 253: 351-360. doi:https://doi.org/10.1002/pssb.201552535
  • Gunna S, Bertazzi F, Paiella R, Bellotti E, 2007. Intersubband Absorption in AlGaN/GaN Quantum Wells. J. Piprek, in: J. Piprek (Ed.), Nitride Semiconductor Devices: Principles and Simulation. Wiley-VCH, pp 117-143, Weinheim. doi:https://doi.org/10.1002/9783527610723.ch6
  • Harrison P, Valavanis A, 2016. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed., John Wiley and Sons, Malaysia. doi:https://doi.org/10.1002/9781118923337
  • Helm M, 1999. The Basic Physics of Intersubband Transitions. H. C. Liu, and F. Capasso, in: Intersubband Transitions in Quantum Wells Physics. Academic Press, 62: pp 1-99, San Diego. doi:https://doi.org/10.1016/S0080-8784(08)60304-X
  • Holec D, Costa, PMFJ, Kappers MJ, Humphreys CJ, 2007. Critical Thickness Calculations for InGaN/GaN. Journal of Crystal Growth, 303: 314-317. doi:https://doi.org/10.1016/j.jcrysgro.2006.12.054
  • Hong W-P, Park S-H, 2021. Linewidth Enhancement Factor of Hybrid Green InGaN/MgZnO Quantum Well Structures. Physica E: Low-dimensional Systems and Nanostructures, 130: 114678. doi:https://doi.org/10.1016/j.physe.2021.114678
  • Jang S-H, Chichibu SF, 2012. Structural, Elastic, and Polarization Parameters and Band Structures of Wurtzite ZnO and MgO. Journal of Applied Physics, 112: 073503. doi:https://doi.org/10.1063/1.4757023
  • Lange M, Dietrich CP, Brachwitz K, Stölzel M, Lorenz M, Grundmann M, 2011. Visible Emission from ZnCdO/ZnO Multiple Quantum Wells. Physica Status Solidi - Rapid Research Letters, 6(1), 31-33. doi:https://doi.org/10.1002/pssr.201105489
  • Liu Y, Wang P, Guo L, Chen H, Yang H, 2019. Investigation of Intersubband Transition Optical Absorption in Zn1−xMgxO/MgO/ZnO Heterostructures. Superlattices and Microstructures, 125: 26-33. doi:https://doi.org/10.1016/j.spmi.2018.10.015
  • Meng B, Hinkov B, Biavan NML, Hoang HT, Lefebvre D, Hugues M, Stark D, Franckié M, Torres-Pardo A, Tamayo-Arriola J, Bajo MM, Hierro A, Strasser G, Faist J, Chauveau JM, 2021. Terahertz Intersubband Electroluminescence from Nonpolar m-Plane ZnO Quantum Cascade Structures. ACS Photonics, 8(1): 343-349. doi:https://doi.org/10.1021/acsphotonics.0c01641
  • Meng B, Tamayo-Arriola J, Le Biavan N, Bajo MM, Torres-Pardo A, Hugues M, Lefebvre D, Hierro A, Chauveau JM, Faist J, 2019. Observation of Intersubband Absorption in ZnO Coupled Quantum Wells. Physical Review Applied, 12: 054007. doi:https://doi.org/10.1103/PhysRevApplied.12.054007
  • Monavarian M, Rashidi A, Feezell D, 2018. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Physica Status Solidi A, 216(1): 1800628. doi:https://doi.org/10.1002/pssa.201800628
  • Orphal L, Kalusniak S, Benson O, Sadofev S, 2017. Tunable Intersubband Transitions in ZnO/ZnMgO Multiple Quantum Wells in the Mid Infrared Spectral Range. AIP Advances, 7: 115309. doi:https://doi.org/10.1063/1.4998805
  • Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H, 2005. A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 98: 041301. doi:https://doi.org/10.1063/1.1992666
  • Özgür Ü, Avrutin V, Morkoç H, 2018. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. H. Mohamed, in: Molecular Beam Epitaxy From Research to Mass Production, Elsevier, pp343-375. doi:https://doi.org/10.1016/B978-0-12-812136-8.00016-5
  • Park D-S, Krupski A, Sanchez AM, Choi C-J, Yi M-S, Lee H-H, McMitchell SRC, McConville CF, 2014. Optimal Growth and Thermal Stability of Crystalline Be0.25Zn0.75O alloy films on Al2O3(0001). Applied Physics Letters, 104: 141902. doi: https://doi.org/10.1063/1.4870533
  • Park S-H, 2020. Cd Content Dependence of in-Plane Optical Polarization in Anisotropically Strained c-Plane CdZnO/ZnO Quantum Wells. Physica B: Condensed Matter, 596: 412393. doi:https://doi.org/10.1016/j.physb.2020.412393
  • Pearton SJ, Ren F, 2014. Advances in ZnO-Based Materials for Light Emitting Diodes. Current Opinion in Chemical Engineering, 3: 51-55. doi:https://doi.org/10.1016/j.coche.2013.11.002
  • Pietrzyk MA, Wierzbicka A, Zielony E, Pieniazek A, Szymon R, Placzek-Popko E, 2020. Fundamental Studies of ZnO Nanowires with ZnCdO/ZnO Multiple Quantum Wells Grown for Tunable Light Emitters. Sensors and Actuators A: Physical, 315: 112305. doi:https://doi.org/10.1016/j.sna.2020.112305
  • Prodhomme P-Y, Beya-Wakata A, Bester G, 2013. Nonlinear Piezoelectricity in Wurtzite Semiconductors. Physical Review B, 88: 121304(R). doi:https://doi.org/10.1103/PhysRevB.88.121304
  • Romanov AE, Baker TJ, Nakamura S, Speck JS, 2006. Strain-Induced Polarization in Wurtzite III-Nitride Semipolar Layers. Journal of Applied Physics, 100: 023522. doi:https://doi.org/10.1063/1.2218385
  • Ryu Y, Lee T-S, Lubguban JA, White HW, Kim B-J, Park Y-S, Youn C-J, 2006. Next Generation of Oxide Photonic Devices: ZnO-Based Ultraviolet Light Emitting Diodes. Applied Physics Letters, 88: 241108. doi: https://doi.org/10.1063/1.2210452
  • Sadofev S, Kalusniak S, Puls J, Schäfer P, Blumstengel S, Henneberger F, 2007. Visible-Wavelength Laser Action of ZnCdO∕(Zn,Mg)O Multiple Quantum Well Structures. Applied Physics Letters, 91: 231103. doi:https://doi.org/10.1063/1.2822889
  • Schleife A, Fuchs F, Rödl C, Furthmüller J, Bechstedt F, 2009. Band-Structure and Optical-Transition Parameters of Wurtzite MgO, ZnO, and CdO from Quasiparticle Calculations. Physica Status Solidi B, 246(9): 2150-2153. doi:https://doi.org/10.1002/pssb.200945204
  • Shein IR, Kiĭko VS, Makurin YN, Gorbunova MA, Ivanovskiĭ AL, 2007. Elastic Parameters of Single-Crystal and Polycrystalline Wurtzite-Like Oxides BeO and ZnO: Ab Initio Calculations. Physics of the Solid State, 49: 1067–1073. doi:https://doi.org/10.1134/S106378340706008X
  • Shtepliuk I, Khranovskyy V, Yakimova R, 2015. Effect of Zn–Cd Interdiffusion on the Band Structure and Spontaneous Emission of ZnO/Zn1−xCdxO/ZnO Quantum Wells. Superlattices and Microstructures, 85: 438-444. doi:https://doi.org/10.1016/j.spmi.2015.06.013
  • Sirkeli VP, Hartnagel HL, 2019. ZnO-Based Terahertz Quantum Cascade Lasers. Opto-Electronics Review, 27(2): 119-122. doi:https://doi.org/10.1016/j.opelre.2019.04.002
  • Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith DJ, Morkoç H, Özgür Ü, 2014. Enhancement of Be and Mg Incorporation in Wurtzite Quaternary BeMgZnO Alloys with up to 5.1 eV Optical Bandgap. Journal of Crystal Growth, 402: 60-64. doi:https://doi.org/10.1016/j.jcrysgro.2014.04.028
  • Toporkov M, Demchenko DO, Zolnai Z, Volk J, Avrutin V, Morkoç H, Özgür Ü, 2016. Lattice Parameters and Electronic Structure of BeMgZnO Quaternary Solid Solutions: Experiment and Theory. Journal of Applied Physics, 119: 095311. doi:https://doi.org/10.1063/1.4942835
  • Ullah MB, 2017. Growth of Zn-Polar BeMgZnO/ZnO Heterostructure with Two Dimensional Electron Gas (2DEG) and Fabrication of Silver Schottky Diode on BeMgZnO/ZnO Heterostructure. Virginia Commonwealth University, Richmond. doi:https://doi.org/10.25772/SKM4-5149
  • Ullah MB, Ding K, Nakagawara T, Avrutin V, Özgür Ü, Morkoç H, 2017. Characterization of Ag Schottky Barriers on Be0.02Mg0.26ZnO/ZnO Heterostructures. Physica Status Solidi – Rapid Research Letters, 12(2): 1700366. doi:https://doi.org/10.1002/pssr.201700366
  • Wagner MR, Callsen G, Reparaz JS, Kirste R, Hoffmann A, Rodina AV, Schleife A, Bechstedt F, Phillips MR, 2013. Effects of Strain on the Valence Band Structure and Exciton-Polariton Energies in ZnO. Physical Review B, 88: 235210. doi:https://doi.org/10.1103/PhysRevB.88.235210
  • Xu Y-N, Ching WY, 1993. Electronic, Optical, and Structural Properties of Some Wurtzite Crystals. Physical Review B, 48: 4335. doi:https://doi.org/10.1103/PhysRevB.48.4335
  • Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Scheffler M, van de Walle CG, 2012. Strain Effects and Band Parameters in MgO, ZnO, and CdO. Applied Physics Letters, 101: 152105. doi:https://doi.org/10.1063/1.4759107
  • Yıldırım H, 2021. Non-polar ZnCdO/ZnO Step-Barrier Quantum Wells Designed for THz Emission. Photonics and Nanostructures - Fundamentals and Applications, 43: 100859. doi:https://doi.org/10.1016/j.photonics.2020.100859
  • Yildirim H, 2019. Nonlinear Optical Absorption in Wurtzite ZnCdO Quantum Wells. Materials Research Express, 6: 0850g9. doi:https://doi.org/10.1088/2053-1591/ab28d2
  • Zhang T, Li M, Chen J, Wang Y, Miao L, Lu Y, He Y, 2022. Multi-Component ZnO Alloys: Bandgap Engineering, Hetero-Structures, and Optoelectronic Devices. Materials Science and Engineering: R: Reports, 147: 100661. doi:https://doi.org/10.1016/j.mser.2021.100661
  • Zhao C-Z, Sun S-Y, Sun X-D, Wang S-S, Wang J, 2018. The Band Gap Energy of BexMgyZn1−x−yO Calculated by Modified Simplified Coherent Potential Approximation. Superlattices and Microstructures, 11:, 255-260. doi:https://doi.org/10.1016/j.spmi.2017.11.003
  • Zhao K, Chen G, Hernandez J, Tamargo MC, Shen A, 2015. Intersubband Absorption in ZnO/ZnMgO Quantum Wells Grown by Plasma-Assisted Molecular Beam Epitaxy on c-Plane Sapphire Substrates. Journal of Crystal Growth, 425: 221-224. doi:https://doi.org/10.1016/j.jcrysgro.2015.02.002
  • Zúñiga-Pérez J, 2017. ZnCdO: Status After 20 Years of Research. Materials Science in Semiconductor Processing, 69: 36-43. doi:https://doi.org/10.1016/j.mssp.2016.12.002

Polar Olmayan ZnO/BeMgZnO Kuantum Kuyularında Altbantlar Arası Geçişler: Fiziksel Boyut, Konsantrasyon ve Donör Seviyesinin Etkileri

Year 2022, , 2113 - 2128, 01.12.2022
https://doi.org/10.21597/jist.1112545

Abstract

Polar ve semipolar yönlerde büyütülen BeMgZnO bariyer tabakaları üzerindeki ZnO kuyu katmanlarının polarizasyon özellikleri araştırıldı. Gevşemiş ve gerilmiş bariyer katmanların durumları göz önünde bulunduruldu. Arayüzlerdeki polarizasyon farkının, kuyu tabakası içinde 8 MV cm^(-1) büyüklüğünde yerleşik bir elektrik alanına yol açtığı bulundu. Polar olmayan ZnO/BeMgZnO kuantum kuyuları, altbantlar arası geçişler açısından incelendi. Hesaplamalar Be ve Mg konsantrasyonlarını sırasıyla 0.18 ve 0.5'e kadar kapsamaktadır. 50 ila 700 meV arasında değişen altbantlar arası geçiş (ISBT) enerjilerinin mümkün olduğu bulundu. Bariyer kalınlığının ISBT enerjileri üzerindeki etkisi incelendi. Sonuçlar, enerjilere kıyasla ISBT enerjilerinde önemsiz değişiklikler olduğunu göstermektedir.

References

  • Ding K, Avrutin V, Izioumskaia N, Ullah MB, Özgür Ü, Morkoç H, 2018. Fabrication of Schottky Diodes on Zn-polar BeMgZnO/ZnO Heterostructure Grown by Plasma-Assisted Molecular Beam Epitaxy. Journal of Visualized Experiments, 140: 58113. doi:https://dx.doi.org/10.3791/58113
  • Duan Y, Qin L, Tang G, Shi L, 2008. First-Principles Study of Ground- and Metastable-State Properties of XO (X = Be, Mg, Ca, Sr, Ba, Zn and Cd). The European Physical Journal B, 66: 201-209. doi:https://doi.org/10.1140/epjb/e2008-00415-3
  • Duman S, Sütlü A, Bağcı S, Tütüncü HM, Srivastava GP, 2009. Structural, Elastic, Electronic, and Phonon Properties of Zinc-Blende and Wurtzite BeO. Journal of Applied Physics, 105: 033719. doi:https://doi.org/10.1063/1.3075814
  • Feezell D, Sharma Y, Krishna S, 2013. Optical Properties of Nonpolar III-Nitrides for Intersubband Photodetectors. Journal of Applied Physics, 113: 133103. doi:https://doi.org/10.1063/1.4798353
  • Grundmann M, Zúñiga-Pérez J, 2015. Pseudomorphic ZnO-Based Heterostructures: From Polar Through All Semipolar to Nonpolar Orientations. Physica Status Solidi B, 253: 351-360. doi:https://doi.org/10.1002/pssb.201552535
  • Gunna S, Bertazzi F, Paiella R, Bellotti E, 2007. Intersubband Absorption in AlGaN/GaN Quantum Wells. J. Piprek, in: J. Piprek (Ed.), Nitride Semiconductor Devices: Principles and Simulation. Wiley-VCH, pp 117-143, Weinheim. doi:https://doi.org/10.1002/9783527610723.ch6
  • Harrison P, Valavanis A, 2016. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed., John Wiley and Sons, Malaysia. doi:https://doi.org/10.1002/9781118923337
  • Helm M, 1999. The Basic Physics of Intersubband Transitions. H. C. Liu, and F. Capasso, in: Intersubband Transitions in Quantum Wells Physics. Academic Press, 62: pp 1-99, San Diego. doi:https://doi.org/10.1016/S0080-8784(08)60304-X
  • Holec D, Costa, PMFJ, Kappers MJ, Humphreys CJ, 2007. Critical Thickness Calculations for InGaN/GaN. Journal of Crystal Growth, 303: 314-317. doi:https://doi.org/10.1016/j.jcrysgro.2006.12.054
  • Hong W-P, Park S-H, 2021. Linewidth Enhancement Factor of Hybrid Green InGaN/MgZnO Quantum Well Structures. Physica E: Low-dimensional Systems and Nanostructures, 130: 114678. doi:https://doi.org/10.1016/j.physe.2021.114678
  • Jang S-H, Chichibu SF, 2012. Structural, Elastic, and Polarization Parameters and Band Structures of Wurtzite ZnO and MgO. Journal of Applied Physics, 112: 073503. doi:https://doi.org/10.1063/1.4757023
  • Lange M, Dietrich CP, Brachwitz K, Stölzel M, Lorenz M, Grundmann M, 2011. Visible Emission from ZnCdO/ZnO Multiple Quantum Wells. Physica Status Solidi - Rapid Research Letters, 6(1), 31-33. doi:https://doi.org/10.1002/pssr.201105489
  • Liu Y, Wang P, Guo L, Chen H, Yang H, 2019. Investigation of Intersubband Transition Optical Absorption in Zn1−xMgxO/MgO/ZnO Heterostructures. Superlattices and Microstructures, 125: 26-33. doi:https://doi.org/10.1016/j.spmi.2018.10.015
  • Meng B, Hinkov B, Biavan NML, Hoang HT, Lefebvre D, Hugues M, Stark D, Franckié M, Torres-Pardo A, Tamayo-Arriola J, Bajo MM, Hierro A, Strasser G, Faist J, Chauveau JM, 2021. Terahertz Intersubband Electroluminescence from Nonpolar m-Plane ZnO Quantum Cascade Structures. ACS Photonics, 8(1): 343-349. doi:https://doi.org/10.1021/acsphotonics.0c01641
  • Meng B, Tamayo-Arriola J, Le Biavan N, Bajo MM, Torres-Pardo A, Hugues M, Lefebvre D, Hierro A, Chauveau JM, Faist J, 2019. Observation of Intersubband Absorption in ZnO Coupled Quantum Wells. Physical Review Applied, 12: 054007. doi:https://doi.org/10.1103/PhysRevApplied.12.054007
  • Monavarian M, Rashidi A, Feezell D, 2018. A Decade of Nonpolar and Semipolar III-Nitrides: A Review of Successes and Challenges. Physica Status Solidi A, 216(1): 1800628. doi:https://doi.org/10.1002/pssa.201800628
  • Orphal L, Kalusniak S, Benson O, Sadofev S, 2017. Tunable Intersubband Transitions in ZnO/ZnMgO Multiple Quantum Wells in the Mid Infrared Spectral Range. AIP Advances, 7: 115309. doi:https://doi.org/10.1063/1.4998805
  • Özgür Ü, Alivov YI, Liu C, Teke A, Reshchikov MA, Doğan S, Avrutin V, Cho S-J, Morkoç H, 2005. A Comprehensive Review of ZnO Materials and Devices. Journal of Applied Physics, 98: 041301. doi:https://doi.org/10.1063/1.1992666
  • Özgür Ü, Avrutin V, Morkoç H, 2018. Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. H. Mohamed, in: Molecular Beam Epitaxy From Research to Mass Production, Elsevier, pp343-375. doi:https://doi.org/10.1016/B978-0-12-812136-8.00016-5
  • Park D-S, Krupski A, Sanchez AM, Choi C-J, Yi M-S, Lee H-H, McMitchell SRC, McConville CF, 2014. Optimal Growth and Thermal Stability of Crystalline Be0.25Zn0.75O alloy films on Al2O3(0001). Applied Physics Letters, 104: 141902. doi: https://doi.org/10.1063/1.4870533
  • Park S-H, 2020. Cd Content Dependence of in-Plane Optical Polarization in Anisotropically Strained c-Plane CdZnO/ZnO Quantum Wells. Physica B: Condensed Matter, 596: 412393. doi:https://doi.org/10.1016/j.physb.2020.412393
  • Pearton SJ, Ren F, 2014. Advances in ZnO-Based Materials for Light Emitting Diodes. Current Opinion in Chemical Engineering, 3: 51-55. doi:https://doi.org/10.1016/j.coche.2013.11.002
  • Pietrzyk MA, Wierzbicka A, Zielony E, Pieniazek A, Szymon R, Placzek-Popko E, 2020. Fundamental Studies of ZnO Nanowires with ZnCdO/ZnO Multiple Quantum Wells Grown for Tunable Light Emitters. Sensors and Actuators A: Physical, 315: 112305. doi:https://doi.org/10.1016/j.sna.2020.112305
  • Prodhomme P-Y, Beya-Wakata A, Bester G, 2013. Nonlinear Piezoelectricity in Wurtzite Semiconductors. Physical Review B, 88: 121304(R). doi:https://doi.org/10.1103/PhysRevB.88.121304
  • Romanov AE, Baker TJ, Nakamura S, Speck JS, 2006. Strain-Induced Polarization in Wurtzite III-Nitride Semipolar Layers. Journal of Applied Physics, 100: 023522. doi:https://doi.org/10.1063/1.2218385
  • Ryu Y, Lee T-S, Lubguban JA, White HW, Kim B-J, Park Y-S, Youn C-J, 2006. Next Generation of Oxide Photonic Devices: ZnO-Based Ultraviolet Light Emitting Diodes. Applied Physics Letters, 88: 241108. doi: https://doi.org/10.1063/1.2210452
  • Sadofev S, Kalusniak S, Puls J, Schäfer P, Blumstengel S, Henneberger F, 2007. Visible-Wavelength Laser Action of ZnCdO∕(Zn,Mg)O Multiple Quantum Well Structures. Applied Physics Letters, 91: 231103. doi:https://doi.org/10.1063/1.2822889
  • Schleife A, Fuchs F, Rödl C, Furthmüller J, Bechstedt F, 2009. Band-Structure and Optical-Transition Parameters of Wurtzite MgO, ZnO, and CdO from Quasiparticle Calculations. Physica Status Solidi B, 246(9): 2150-2153. doi:https://doi.org/10.1002/pssb.200945204
  • Shein IR, Kiĭko VS, Makurin YN, Gorbunova MA, Ivanovskiĭ AL, 2007. Elastic Parameters of Single-Crystal and Polycrystalline Wurtzite-Like Oxides BeO and ZnO: Ab Initio Calculations. Physics of the Solid State, 49: 1067–1073. doi:https://doi.org/10.1134/S106378340706008X
  • Shtepliuk I, Khranovskyy V, Yakimova R, 2015. Effect of Zn–Cd Interdiffusion on the Band Structure and Spontaneous Emission of ZnO/Zn1−xCdxO/ZnO Quantum Wells. Superlattices and Microstructures, 85: 438-444. doi:https://doi.org/10.1016/j.spmi.2015.06.013
  • Sirkeli VP, Hartnagel HL, 2019. ZnO-Based Terahertz Quantum Cascade Lasers. Opto-Electronics Review, 27(2): 119-122. doi:https://doi.org/10.1016/j.opelre.2019.04.002
  • Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith DJ, Morkoç H, Özgür Ü, 2014. Enhancement of Be and Mg Incorporation in Wurtzite Quaternary BeMgZnO Alloys with up to 5.1 eV Optical Bandgap. Journal of Crystal Growth, 402: 60-64. doi:https://doi.org/10.1016/j.jcrysgro.2014.04.028
  • Toporkov M, Demchenko DO, Zolnai Z, Volk J, Avrutin V, Morkoç H, Özgür Ü, 2016. Lattice Parameters and Electronic Structure of BeMgZnO Quaternary Solid Solutions: Experiment and Theory. Journal of Applied Physics, 119: 095311. doi:https://doi.org/10.1063/1.4942835
  • Ullah MB, 2017. Growth of Zn-Polar BeMgZnO/ZnO Heterostructure with Two Dimensional Electron Gas (2DEG) and Fabrication of Silver Schottky Diode on BeMgZnO/ZnO Heterostructure. Virginia Commonwealth University, Richmond. doi:https://doi.org/10.25772/SKM4-5149
  • Ullah MB, Ding K, Nakagawara T, Avrutin V, Özgür Ü, Morkoç H, 2017. Characterization of Ag Schottky Barriers on Be0.02Mg0.26ZnO/ZnO Heterostructures. Physica Status Solidi – Rapid Research Letters, 12(2): 1700366. doi:https://doi.org/10.1002/pssr.201700366
  • Wagner MR, Callsen G, Reparaz JS, Kirste R, Hoffmann A, Rodina AV, Schleife A, Bechstedt F, Phillips MR, 2013. Effects of Strain on the Valence Band Structure and Exciton-Polariton Energies in ZnO. Physical Review B, 88: 235210. doi:https://doi.org/10.1103/PhysRevB.88.235210
  • Xu Y-N, Ching WY, 1993. Electronic, Optical, and Structural Properties of Some Wurtzite Crystals. Physical Review B, 48: 4335. doi:https://doi.org/10.1103/PhysRevB.48.4335
  • Yan Q, Rinke P, Winkelnkemper M, Qteish A, Bimberg D, Scheffler M, van de Walle CG, 2012. Strain Effects and Band Parameters in MgO, ZnO, and CdO. Applied Physics Letters, 101: 152105. doi:https://doi.org/10.1063/1.4759107
  • Yıldırım H, 2021. Non-polar ZnCdO/ZnO Step-Barrier Quantum Wells Designed for THz Emission. Photonics and Nanostructures - Fundamentals and Applications, 43: 100859. doi:https://doi.org/10.1016/j.photonics.2020.100859
  • Yildirim H, 2019. Nonlinear Optical Absorption in Wurtzite ZnCdO Quantum Wells. Materials Research Express, 6: 0850g9. doi:https://doi.org/10.1088/2053-1591/ab28d2
  • Zhang T, Li M, Chen J, Wang Y, Miao L, Lu Y, He Y, 2022. Multi-Component ZnO Alloys: Bandgap Engineering, Hetero-Structures, and Optoelectronic Devices. Materials Science and Engineering: R: Reports, 147: 100661. doi:https://doi.org/10.1016/j.mser.2021.100661
  • Zhao C-Z, Sun S-Y, Sun X-D, Wang S-S, Wang J, 2018. The Band Gap Energy of BexMgyZn1−x−yO Calculated by Modified Simplified Coherent Potential Approximation. Superlattices and Microstructures, 11:, 255-260. doi:https://doi.org/10.1016/j.spmi.2017.11.003
  • Zhao K, Chen G, Hernandez J, Tamargo MC, Shen A, 2015. Intersubband Absorption in ZnO/ZnMgO Quantum Wells Grown by Plasma-Assisted Molecular Beam Epitaxy on c-Plane Sapphire Substrates. Journal of Crystal Growth, 425: 221-224. doi:https://doi.org/10.1016/j.jcrysgro.2015.02.002
  • Zúñiga-Pérez J, 2017. ZnCdO: Status After 20 Years of Research. Materials Science in Semiconductor Processing, 69: 36-43. doi:https://doi.org/10.1016/j.mssp.2016.12.002
There are 44 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Hasan Yıldırım 0000-0002-7436-7759

Raşit Çakır 0000-0002-7104-9069

Publication Date December 1, 2022
Submission Date May 6, 2022
Acceptance Date August 3, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, H., & Çakır, R. (2022). Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level. Journal of the Institute of Science and Technology, 12(4), 2113-2128. https://doi.org/10.21597/jist.1112545
AMA Yıldırım H, Çakır R. Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level. Iğdır Üniv. Fen Bil Enst. Der. December 2022;12(4):2113-2128. doi:10.21597/jist.1112545
Chicago Yıldırım, Hasan, and Raşit Çakır. “Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 2113-28. https://doi.org/10.21597/jist.1112545.
EndNote Yıldırım H, Çakır R (December 1, 2022) Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level. Journal of the Institute of Science and Technology 12 4 2113–2128.
IEEE H. Yıldırım and R. Çakır, “Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 4, pp. 2113–2128, 2022, doi: 10.21597/jist.1112545.
ISNAD Yıldırım, Hasan - Çakır, Raşit. “Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level”. Journal of the Institute of Science and Technology 12/4 (December 2022), 2113-2128. https://doi.org/10.21597/jist.1112545.
JAMA Yıldırım H, Çakır R. Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:2113–2128.
MLA Yıldırım, Hasan and Raşit Çakır. “Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 2113-28, doi:10.21597/jist.1112545.
Vancouver Yıldırım H, Çakır R. Intersubband Transitions in Nonpolar ZnO/BeMgZnO Quantum Wells: Effects of Physical Dimension, Concentration and Donor Level. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(4):2113-28.