Research Article
BibTex RIS Cite

Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi

Year 2022, , 1995 - 2003, 01.12.2022
https://doi.org/10.21597/jist.1143528

Abstract

Obezite karmaşık, çok faktörlü ve dünya genelinde önemli bir sağlık sorunudur. Obezite tedavisi için mevcut stratejiler oldukça kısıtlıdır. Bu nedenle yeni ilaç geliştirilmesi oldukça önemlidir. Çalışmanın amacı, GLP-1 agonisti olan eksenatidin 3 boyutlu (3D) 3T3-L1 adipositleri üzerindeki sitotoksisitesinin, tüm genom profili üzerinden araştırmaktır. Bu çalışmada, eksenatidin 3D adipositler üzerindeki apoptotik ve lipolitik etki düzeyleri de araştırıldı. Eksenatidin 3T3-L1 adipositleri üzerindeki sitotoksik aktivitesi MTT yöntemi ile belirlendi. mRNA' ları taramak için fare geni mikrodizisi kullanıldı. Apoptoz çalışmaları ELISA yöntemi ile yapıldı. Lipoliz analizi, Lipolysis Colorimetric Assay Kit ile gerçekleştirildi. 3D yağ doku modellemesinde eksenatid uygulaması apoptoz seviyesini arttırdı (p<0.01). 3D 3T3-L1 adipositleri ile yapılan deneyler, eksenatid uygulamasında lipolitik etkinin yüksek olduğunu gösterdi (p=0.000). 3D adiposit hücrelerinde mRNA'ların ekspresyon profillerini göstermek için yapılan transkriptom analizlerinde, eksenatid uygulanan grupta kontrol adiposit hücreleriyle kıyaslandığında toplam 3472 mRNA farklı şekilde ifade edildi (p<0.05). Bu çalışmadan elde edilen sonuçlar, eksenatidin, çeşitli genlerin anlatımını, adiposit apoptozunu ve lipoliz aktivitesini düzenleyerek obezite tedavisinde etkili olduğunu gösterebilir.

Supporting Institution

TÜBİTAK

Project Number

220S827

Thanks

Bu çalışma TÜBİTAK tarafından “220S827” kodlu proje ile desteklenmiştir. Bioink üretimi ile ilgili geri bildirimleri ve tavsiyeleri için Bugamed Teknoloji’ye (Türkiye) teşekkür ederiz.

References

  • Blüher M, 2019. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5): 288.
  • Buse JB, Drucker DJ, Taylor KL, Kim T, Walsh B, Hu H, Wilhelm K, Trautmann M, Shen LZ, Porter LE, DURATION-1 Study Group, 2010. DURATION-1 Study Group. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care, 33:1255–1261.
  • Caballero B, 2007. The Global Epidemic of Obesity: An Overview. Epidemiologic Reviews, 29(1): 1-5.
  • Chen YT, Tseng PH, Tseng FY, Chi YC, Han DS, Yang WS, 2019. The serum level of a novel lipogenic protein Spot 14 was reduced in metabolic syndrome. Plos one, 14(2): e0212341.
  • Chooi YC, Ding C, Magkos F, 2019. The epidemiology of obesity. Metabolism, 92: 6-10.
  • Drucker DJ, Habener JF, Holst JJ, 2017. Discovery, characterization, and clinical development of the glucagonlike peptides. J Clin Invest, 127: 4217-4227.
  • Drucker DJ, Nauck MA, 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 368: 1696-1705.
  • Drucker DJ, Yusta B, 2014. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide. Annu Rev Physiol, 76: 561-583.
  • Gariani K, Ryu D, Menzies KJ, Yi HS, Stein S, Zhang H, Perino A, Lemos V, Katsyuba E, Jha P, Vijgen S, Rubbia-Brandt L, Kim YK, Kim JT, Kim KS, Shong M, Schoonjans K, Auwerx J, 2017. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of hepatology, 66(1): 132-141.
  • Graham AD, Pandey R, Tsancheva VS, Candeo A, Botchway SW, Allan AJ, Teboul L, Madi K, Babra TS, Zolkiewski LAK, Xue X, Bentley L, Gannon J, Olof SN, Cox RD, 2020. The development of a high throughput drug-responsive model of white adipose tissue comprising adipogenic 3T3-L1 cells in a 3D matrix. Biofabrication, 12(1): 015018.
  • Hanefeld M, Köhler C, 2002. The metabolic syndrome and its epidemiologic dimensions in historical perspective. Z Arztl Fortbild Qualitatssich, 96(3): 183-188.
  • Ivezić-Lalić D, Marković BB, Kranjčević K, Kern J, Vrdoljak D, Vučak J, 2013. Diversity of metabolic syndrome criteria in association with cardiovascular diseases–a family medicine-based investigation. Medical science monitor: international medical journal of experimental and clinical research, 19: 571.
  • Koldemir Gündüz, M, 2022. BGM, a Newly Synthesised Boron Compound, Induces Apoptosis and Reduces Oxidative Stress by Inhibiting Lipogenesis in 3T3-L1 Adipocytes via PPARγ and CTRP3. Biological Trace Element Research, 1-10.
  • Lefterova MI, Haakonsson AK, LazarMA, Mandrup S, 2014. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol. Metab, 25: 293–302.
  • Lillie RD, Ashburn LL, 1943. Supersaturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degeneration not shown by Herxheimer’s technique Archs.Path., 36:432.
  • Lim SH, Lee HS, Han HK, Choi CI, 2021. Saikosaponin A and D Inhibit Adipogenesis via the AMPK and MAPK Signaling Pathways in 3T3-L1 Adipocytes. Int. J. Mol. Sci., 22: 11409.
  • Masa JF, Pépin JL, Borel JC, Mokhlesi B, Murphy PB, Sánchez-Quiroga MÁ., 2019. Obesity hypoventilation syndrome. European Respiratory Review, 28(151): 180097.
  • Ortega FJ, Vazquez-Martin A, Moreno-Navarrete JM, Bassols J, Rodriguez-Hermosa J, Gironés J, Ricart W, Peral B, Tinahones FJ, Fruhbeck G, Menendez JA, Fernández-Real JM, 2010. Thyroid hormone responsive Spot 14 increases during differentiation of human adipocytes and its expression is down-regulated in obese subjects. International Journal of Obesity, 34(3): 487-499.
  • Parratte S, Pesenti S, Argenson JN, 2014. Obesity in orthopedics and trauma surgery. Orthopaedics & Traumatology: Surgery & Research, 100(1): 91-97.
  • Prentice AM, Hennig BJ, Fulford AJ, 2008. Evolutionary origins of the obesity epidemic: Natural selection of thrifty genes or genetic drift following predation release? International Journal of Obesity, 32(11): 1607-1610.
  • Rosenstock J, Klaff LJ, Schwartz S, Northrup J, Holcombe JH, Wilhelm K, Trautmann M, 2010. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care, 33:1173–1175.
  • Serrero G, Khoo JC, 1982. An in vitro model to study adipose differentiation in serum-free medium Anal. Biochem., 120: 351–359.
  • Schmidt H, Bechtold-Dalla Pozza S, Bonfig W, Schwarz HP, Dokoupil K, 2008. Successful early dietary intervention avoids obesity in patients with Prader-Willi syndrome: a ten-year follow-up. Journal of Pediatric Endocrinology and Metabolism, 21(7): 651-656.
  • Vendrell J, Bekay ER, Peral B, García-Fuentes E, Megia A, Macias-Gonzalez M, Fernández Real J, Jimenez-Gomez Y, Escoté X, Pachón G, Simó R, Selva DM, Malagón MM, Tinahones FJ, 2011. Study of the Potential Association of Adipose Tissue GLP-1 Receptor with Obesity and Insulin Resistance. Endocrinology, 152(11): 4072–4079.
  • Yerlikaya A, Okur E, Şeker S, Erin N, 2010. Combined effects of the proteasome inhibitor bortezomib and Hsp70 inhibitors on the B16F10 melanoma cell line. Mol Med Rep, 3: 333–339.
  • Zeggini E, Gloyn AL, Barton AC, Wain LV, 2019. Translational genomics and precision medicine: moving from the lab to the clinic. Science, 365: 1409–1413.
  • Zhang Y, Huang C, 2012. Targeting adipocyte apoptosis: A novel strategy for obesity therapy. Biochemical and Biophysical Research Communications, 417: 1–4.

Determination of the expression profile of exenatide on 3D 3T3-L1 adipocytes by microarray analysis

Year 2022, , 1995 - 2003, 01.12.2022
https://doi.org/10.21597/jist.1143528

Abstract

Obesity is a complex, multifactorial and important health problem worldwide. Current strategies for the treatment of obesity are quite limited. Therefore, the development of new drugs is very important. The aim of the study was to investigate the cytotoxicity of the GLP-1 agonist exenatide on 3 dimensional (3D) 3T3-L1 adipocytes through the whole genome profile. In this study, the apoptotic and lipolytic effect levels of exenatide on 3D adipocytes were also investigated. The cytotoxic activity of exenatide on 3T3-L1 adipocytes was determined by MTT method. Mouse gene microarray was used to screen for mRNAs. Apoptosis studies were performed by ELISA method. Lipolysis analysis was performed with the Lipolysis Colorimetric Assay Kit. In 3D adipose tissue modeling, exenatide application increased apoptosis level (p<0.01). Experiments with 3D 3T3-L1 adipocytes showed a high lipolytic effect in exenatide administration (p=0.000). In transcriptome analyzes performed to show the expression profiles of mRNAs in 3D adipocyte cells, a total of 3472 mRNAs were differentially expressed in the exenatide treated group compared to control adipocyte cells (p<0.05). The results obtained from this study may show that exenatide is effective in the treatment of obesity by regulating expression of various genes, adipocyte apoptosis and lipolysis activity.

Project Number

220S827

References

  • Blüher M, 2019. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5): 288.
  • Buse JB, Drucker DJ, Taylor KL, Kim T, Walsh B, Hu H, Wilhelm K, Trautmann M, Shen LZ, Porter LE, DURATION-1 Study Group, 2010. DURATION-1 Study Group. DURATION-1: exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care, 33:1255–1261.
  • Caballero B, 2007. The Global Epidemic of Obesity: An Overview. Epidemiologic Reviews, 29(1): 1-5.
  • Chen YT, Tseng PH, Tseng FY, Chi YC, Han DS, Yang WS, 2019. The serum level of a novel lipogenic protein Spot 14 was reduced in metabolic syndrome. Plos one, 14(2): e0212341.
  • Chooi YC, Ding C, Magkos F, 2019. The epidemiology of obesity. Metabolism, 92: 6-10.
  • Drucker DJ, Habener JF, Holst JJ, 2017. Discovery, characterization, and clinical development of the glucagonlike peptides. J Clin Invest, 127: 4217-4227.
  • Drucker DJ, Nauck MA, 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 368: 1696-1705.
  • Drucker DJ, Yusta B, 2014. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide. Annu Rev Physiol, 76: 561-583.
  • Gariani K, Ryu D, Menzies KJ, Yi HS, Stein S, Zhang H, Perino A, Lemos V, Katsyuba E, Jha P, Vijgen S, Rubbia-Brandt L, Kim YK, Kim JT, Kim KS, Shong M, Schoonjans K, Auwerx J, 2017. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of hepatology, 66(1): 132-141.
  • Graham AD, Pandey R, Tsancheva VS, Candeo A, Botchway SW, Allan AJ, Teboul L, Madi K, Babra TS, Zolkiewski LAK, Xue X, Bentley L, Gannon J, Olof SN, Cox RD, 2020. The development of a high throughput drug-responsive model of white adipose tissue comprising adipogenic 3T3-L1 cells in a 3D matrix. Biofabrication, 12(1): 015018.
  • Hanefeld M, Köhler C, 2002. The metabolic syndrome and its epidemiologic dimensions in historical perspective. Z Arztl Fortbild Qualitatssich, 96(3): 183-188.
  • Ivezić-Lalić D, Marković BB, Kranjčević K, Kern J, Vrdoljak D, Vučak J, 2013. Diversity of metabolic syndrome criteria in association with cardiovascular diseases–a family medicine-based investigation. Medical science monitor: international medical journal of experimental and clinical research, 19: 571.
  • Koldemir Gündüz, M, 2022. BGM, a Newly Synthesised Boron Compound, Induces Apoptosis and Reduces Oxidative Stress by Inhibiting Lipogenesis in 3T3-L1 Adipocytes via PPARγ and CTRP3. Biological Trace Element Research, 1-10.
  • Lefterova MI, Haakonsson AK, LazarMA, Mandrup S, 2014. PPARgamma and the global map of adipogenesis and beyond. Trends Endocrinol. Metab, 25: 293–302.
  • Lillie RD, Ashburn LL, 1943. Supersaturated solutions of fat stains in dilute isopropanol for demonstration of acute fatty degeneration not shown by Herxheimer’s technique Archs.Path., 36:432.
  • Lim SH, Lee HS, Han HK, Choi CI, 2021. Saikosaponin A and D Inhibit Adipogenesis via the AMPK and MAPK Signaling Pathways in 3T3-L1 Adipocytes. Int. J. Mol. Sci., 22: 11409.
  • Masa JF, Pépin JL, Borel JC, Mokhlesi B, Murphy PB, Sánchez-Quiroga MÁ., 2019. Obesity hypoventilation syndrome. European Respiratory Review, 28(151): 180097.
  • Ortega FJ, Vazquez-Martin A, Moreno-Navarrete JM, Bassols J, Rodriguez-Hermosa J, Gironés J, Ricart W, Peral B, Tinahones FJ, Fruhbeck G, Menendez JA, Fernández-Real JM, 2010. Thyroid hormone responsive Spot 14 increases during differentiation of human adipocytes and its expression is down-regulated in obese subjects. International Journal of Obesity, 34(3): 487-499.
  • Parratte S, Pesenti S, Argenson JN, 2014. Obesity in orthopedics and trauma surgery. Orthopaedics & Traumatology: Surgery & Research, 100(1): 91-97.
  • Prentice AM, Hennig BJ, Fulford AJ, 2008. Evolutionary origins of the obesity epidemic: Natural selection of thrifty genes or genetic drift following predation release? International Journal of Obesity, 32(11): 1607-1610.
  • Rosenstock J, Klaff LJ, Schwartz S, Northrup J, Holcombe JH, Wilhelm K, Trautmann M, 2010. Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care, 33:1173–1175.
  • Serrero G, Khoo JC, 1982. An in vitro model to study adipose differentiation in serum-free medium Anal. Biochem., 120: 351–359.
  • Schmidt H, Bechtold-Dalla Pozza S, Bonfig W, Schwarz HP, Dokoupil K, 2008. Successful early dietary intervention avoids obesity in patients with Prader-Willi syndrome: a ten-year follow-up. Journal of Pediatric Endocrinology and Metabolism, 21(7): 651-656.
  • Vendrell J, Bekay ER, Peral B, García-Fuentes E, Megia A, Macias-Gonzalez M, Fernández Real J, Jimenez-Gomez Y, Escoté X, Pachón G, Simó R, Selva DM, Malagón MM, Tinahones FJ, 2011. Study of the Potential Association of Adipose Tissue GLP-1 Receptor with Obesity and Insulin Resistance. Endocrinology, 152(11): 4072–4079.
  • Yerlikaya A, Okur E, Şeker S, Erin N, 2010. Combined effects of the proteasome inhibitor bortezomib and Hsp70 inhibitors on the B16F10 melanoma cell line. Mol Med Rep, 3: 333–339.
  • Zeggini E, Gloyn AL, Barton AC, Wain LV, 2019. Translational genomics and precision medicine: moving from the lab to the clinic. Science, 365: 1409–1413.
  • Zhang Y, Huang C, 2012. Targeting adipocyte apoptosis: A novel strategy for obesity therapy. Biochemical and Biophysical Research Communications, 417: 1–4.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Meliha Koldemir Gündüz 0000-0003-0969-6377

Güllü Kaymak 0000-0001-6309-0208

Ertan Kanbur 0000-0001-8399-8942

Derya Berikten 0000-0002-8672-4813

Meryem Cansu Şahin 0000-0002-5743-3734

Harun Şener 0000-0003-3521-0684

Azmi Yerlikaya 0000-0002-0678-0701

Project Number 220S827
Publication Date December 1, 2022
Submission Date July 13, 2022
Acceptance Date September 16, 2022
Published in Issue Year 2022

Cite

APA Koldemir Gündüz, M., Kaymak, G., Kanbur, E., Berikten, D., et al. (2022). Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi. Journal of the Institute of Science and Technology, 12(4), 1995-2003. https://doi.org/10.21597/jist.1143528
AMA Koldemir Gündüz M, Kaymak G, Kanbur E, Berikten D, Şahin MC, Şener H, Yerlikaya A. Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. December 2022;12(4):1995-2003. doi:10.21597/jist.1143528
Chicago Koldemir Gündüz, Meliha, Güllü Kaymak, Ertan Kanbur, Derya Berikten, Meryem Cansu Şahin, Harun Şener, and Azmi Yerlikaya. “Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi Ile Belirlenmesi”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 1995-2003. https://doi.org/10.21597/jist.1143528.
EndNote Koldemir Gündüz M, Kaymak G, Kanbur E, Berikten D, Şahin MC, Şener H, Yerlikaya A (December 1, 2022) Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi. Journal of the Institute of Science and Technology 12 4 1995–2003.
IEEE M. Koldemir Gündüz, G. Kaymak, E. Kanbur, D. Berikten, M. C. Şahin, H. Şener, and A. Yerlikaya, “Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 4, pp. 1995–2003, 2022, doi: 10.21597/jist.1143528.
ISNAD Koldemir Gündüz, Meliha et al. “Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi Ile Belirlenmesi”. Journal of the Institute of Science and Technology 12/4 (December 2022), 1995-2003. https://doi.org/10.21597/jist.1143528.
JAMA Koldemir Gündüz M, Kaymak G, Kanbur E, Berikten D, Şahin MC, Şener H, Yerlikaya A. Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:1995–2003.
MLA Koldemir Gündüz, Meliha et al. “Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi Ile Belirlenmesi”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 1995-03, doi:10.21597/jist.1143528.
Vancouver Koldemir Gündüz M, Kaymak G, Kanbur E, Berikten D, Şahin MC, Şener H, Yerlikaya A. Eksenatidin 3D 3T3-L1 Adipositleri Üzerindeki Ekspresyon Profilinin Mikrodizin Analizi ile Belirlenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(4):1995-2003.