Research Article
BibTex RIS Cite

İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı

Year 2023, , 278 - 284, 01.03.2023
https://doi.org/10.21597/jist.1155664

Abstract

Bu çalışmada, üç boyutlu hetero yapılarda oluşturulan iki boyutlu elektron sistemi üzerinde metalik kapılar kullanılarak tanımlanabilen Hall bar geometrisi, iki farklı kapı yöntemi için incelenmiştir. Hesaplamalarda üç boyutlu Poisson denklemi, kendinden tutarlı çözülerek elektron yoğunluğunun ve potansiyel profilinin iki boyutlu uzaysal dağılımları belirlenmiştir. Dik bir manyetik alan varlığında, her iki kapı yöntemi ile elde edilen elektron dağılımlarında oluşan sıkıştırılamaz şeritlerin yerleri, kalınlıkları ve bu bölgelerdeki elektronların hızları manyetik alanın bir fonksiyonu olarak sunulmuştur. Manyetik alanın artması ile Sıkıştırılamaz Şeritlerin kalınlıklarının arttığı ve bu bölgelerdeki elektronların hızlarının azaldığı görülmektedir. Yapılan hesaplamaların sonuçları, daha önce yapılmış çalışmalar ile uyumludur. Aynı zamanda, çalışmanın, kuantum sensörler ve bilgisayarlar alanında katkı sunacağı düşünülmektedir.

Supporting Institution

Yok

Project Number

Yok

References

  • Ahlswede, E., Weis, J., Klitzing, K. v., Eberl, K. (2002). Hall potential distribution in the quantum Hall regime in the vicinity of a potential probe contact. Physica E, 12(1-4), 165-168.
  • Arslan, S., Cicek, E., Eksi, D., Aktas, D., Weichselbaum, A., Siddiki, A. (2008). Modeling of quantum point contacts in high magnetic fields and with current bias outside the linear response regime. Physical Review B, 78, 125423.
  • Camino, F. E., Zhou, W., Goldman, V. J. (2005). Aharonov-Bohm electron interferometer in the integer quantum Hall regime. Physical Review B, 72, 155313.
  • Chklovskii, D. B., Shklovskii, B. I. ve Glazman, L. I. (1992). Electrostatics of edge channels. Physical Review B, 46, 4026.
  • Eksi, D., Cicek, E., Mese, A. I., Aktas, S., Siddiki, A., Hakioğlu, T. (2007). Theoretical investigation of the effect of sample properties on the electron velocity in quantum Hall bars. Physical Review B, 76, 075334.
  • Eksi, D., Kilicoglu, O., Göktas, O., Siddiki, A. (2010). Screening model of metallic nonideal contacts in the integer quantized Hall regime. Physical Review B, 82, 165308.
  • Eksi, D. ve Siddiki, A. (2022). Investigating the current distribution of parallel-configured quantum point contacts under quantum Hall conditions. Journal of Computational Electronics, 21, 1–9.
  • Gaury, B., Weston, J. ve Waintal, X. (2014). Stopping electrons with radio-frequency pulses in the quantum Hall regime. Physical Review B, 90, 161305(R).
  • Güven, K. ve Gerhardts, R. R. (2003). Self-consistent local equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields. Physical Review B, 67, 115327.
  • Ilani, S., Martin, J., Teitelbaum, E., Smet, J. H., Mahalu, D., Umansky, V., Yacoby, A. (2004). The microscopic nature of localization in the quantum Hall effect. Nature, 427, 328-332.
  • Klitzing, K. v., Dorda, G. ve Pepper, M. (1980). New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45, 494.
  • Kramer, T. (2006). A heuristic quantum theory of the integer quantum hall effect. International Journal of Modern Physics B, 20, 1243-1260.
  • Litvin, L. V., Helzel, A., Tranitz, H. -P., Wegscheider, W., Strunk, C. (2008). Edge-channel interference controlled by Landau level filling. Physical Review B, 78, 075303.
  • McClure, D. T., Zhang, Y., Rosenow, B., Levenson-Falk, E. M., Marcus, C. M., Pfeiffer, L. N., West, K. W. (2009). Edge-State Velocity and Coherence in a Quantum Hall Fabry-Pérot Interferometer. Physical Review Letters, 103, 206806.
  • Neder, I., Heiblum, M., Levinson, Y., Mahalu, M., Umansky, V. (2006). Unexpected Behavior in a Two-Path Electron Interferometer. Physical Review Letters, 96, 016804.
  • Oh, J. H. ve Gerhardts, R. R. (1997). Self-consistent Thomas-Fermi calculation of potential and current distributions in a two-dimensional Hall bar geometry. Physical Review B, 56, 13519.
  • Ping, V. L., Camino, F. E ve Goldman, V. J. (2009). Electron interferometry in the quantum Hall regime: Aharonov-Bohm effect of interacting electrons. Physical Review B, 80, 125310.
  • Roulleau, P., Portier, F., Roche, P., Cavanna, A., Faini, G., Gennser, U., Mailly, D. (2008). Noise Dephasing in Edge States of the Integer Quantum Hall Regime. Physical Review Letters, 101, 186803.
  • Siddiki, A., Eksi, D., Cicek, E., Mese, A. I., Aktas, S., Hakioğlu, T. (2008). Theoretical investigation of the electron velocity in quantum Hall bars, in the out of linear response regime. Physica E, 40, 1217-1219.
  • Siddiki, A. ve Gerhardts R. R. (2003). Thomas-Fermi-Poisson theory of screening for laterally confined and unconfined two-dimensional electron systems in strong magnetic fields. Physical Review B, 68, 125315.
  • Siddiki, A. ve Gerhardts, R. R. (2004). Incompressible strips in dissipative Hall bars as origin of quantized Hall plateaus. Physical Review B, 70, 195335.
  • Sohrmann, C. ve Römer, R. A. (2007). Compressibility stripes for mesoscopic quantum Hall samples. New Journal of Physics, 9, 97.
  • Weichselbaum, A. ve Ulloa, S. E. (2006). Tunability of qubit Coulomb interaction: Numerical analysis of top-gate depletion in two-dimensional electron systems. Physical Review B, 74, 085318.
  • Wulf, U., Gudmundsson, V. ve Gerhardts, R. R. (1988). Screening properties of the two-dimensional electron gas in the quantum Hall regime. Physical Review B, 38, 4218.
  • Zhang, Y., McClure, D. T., Levenson-Falk, E. M., Marcus, C. M., Pfeiffer, L. N., West, K. W. (2009). Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Physical Review B, 79, 241304(R).

Thicknesses and Electron Velocity of Incompressible Strips in The Hall Bar Formed by The Two Different Metallic Gate Method

Year 2023, , 278 - 284, 01.03.2023
https://doi.org/10.21597/jist.1155664

Abstract

In this study, Hall bar Geometry, which can be defined using metallic gates on a two-dimensional electron system formed in three-dimensional heterostructures, was investigated for two different gate methods. In the calculations, the two-dimensional spatial distributions of the electron density and potential profile were determined by solving the three-dimensional Poisson equation in a self-consistent manner. In the presence of a perpendicular magnetic field, the locations of the incompressible strips formed in the electron distributions obtained by both gate methods, thicknesses and velocities of the electrons in these regions has been presented as a function of the magnetic field. It is seen that the thickness of the Incompressible Strips increases with the increase of the magnetic field and the velocity of the electrons in these regions decreases. The results of the calculations are in agreement with previous studies. At the same time, it is thought that the study will contribute in the field of quantum sensors and computers.

Project Number

Yok

References

  • Ahlswede, E., Weis, J., Klitzing, K. v., Eberl, K. (2002). Hall potential distribution in the quantum Hall regime in the vicinity of a potential probe contact. Physica E, 12(1-4), 165-168.
  • Arslan, S., Cicek, E., Eksi, D., Aktas, D., Weichselbaum, A., Siddiki, A. (2008). Modeling of quantum point contacts in high magnetic fields and with current bias outside the linear response regime. Physical Review B, 78, 125423.
  • Camino, F. E., Zhou, W., Goldman, V. J. (2005). Aharonov-Bohm electron interferometer in the integer quantum Hall regime. Physical Review B, 72, 155313.
  • Chklovskii, D. B., Shklovskii, B. I. ve Glazman, L. I. (1992). Electrostatics of edge channels. Physical Review B, 46, 4026.
  • Eksi, D., Cicek, E., Mese, A. I., Aktas, S., Siddiki, A., Hakioğlu, T. (2007). Theoretical investigation of the effect of sample properties on the electron velocity in quantum Hall bars. Physical Review B, 76, 075334.
  • Eksi, D., Kilicoglu, O., Göktas, O., Siddiki, A. (2010). Screening model of metallic nonideal contacts in the integer quantized Hall regime. Physical Review B, 82, 165308.
  • Eksi, D. ve Siddiki, A. (2022). Investigating the current distribution of parallel-configured quantum point contacts under quantum Hall conditions. Journal of Computational Electronics, 21, 1–9.
  • Gaury, B., Weston, J. ve Waintal, X. (2014). Stopping electrons with radio-frequency pulses in the quantum Hall regime. Physical Review B, 90, 161305(R).
  • Güven, K. ve Gerhardts, R. R. (2003). Self-consistent local equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields. Physical Review B, 67, 115327.
  • Ilani, S., Martin, J., Teitelbaum, E., Smet, J. H., Mahalu, D., Umansky, V., Yacoby, A. (2004). The microscopic nature of localization in the quantum Hall effect. Nature, 427, 328-332.
  • Klitzing, K. v., Dorda, G. ve Pepper, M. (1980). New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45, 494.
  • Kramer, T. (2006). A heuristic quantum theory of the integer quantum hall effect. International Journal of Modern Physics B, 20, 1243-1260.
  • Litvin, L. V., Helzel, A., Tranitz, H. -P., Wegscheider, W., Strunk, C. (2008). Edge-channel interference controlled by Landau level filling. Physical Review B, 78, 075303.
  • McClure, D. T., Zhang, Y., Rosenow, B., Levenson-Falk, E. M., Marcus, C. M., Pfeiffer, L. N., West, K. W. (2009). Edge-State Velocity and Coherence in a Quantum Hall Fabry-Pérot Interferometer. Physical Review Letters, 103, 206806.
  • Neder, I., Heiblum, M., Levinson, Y., Mahalu, M., Umansky, V. (2006). Unexpected Behavior in a Two-Path Electron Interferometer. Physical Review Letters, 96, 016804.
  • Oh, J. H. ve Gerhardts, R. R. (1997). Self-consistent Thomas-Fermi calculation of potential and current distributions in a two-dimensional Hall bar geometry. Physical Review B, 56, 13519.
  • Ping, V. L., Camino, F. E ve Goldman, V. J. (2009). Electron interferometry in the quantum Hall regime: Aharonov-Bohm effect of interacting electrons. Physical Review B, 80, 125310.
  • Roulleau, P., Portier, F., Roche, P., Cavanna, A., Faini, G., Gennser, U., Mailly, D. (2008). Noise Dephasing in Edge States of the Integer Quantum Hall Regime. Physical Review Letters, 101, 186803.
  • Siddiki, A., Eksi, D., Cicek, E., Mese, A. I., Aktas, S., Hakioğlu, T. (2008). Theoretical investigation of the electron velocity in quantum Hall bars, in the out of linear response regime. Physica E, 40, 1217-1219.
  • Siddiki, A. ve Gerhardts R. R. (2003). Thomas-Fermi-Poisson theory of screening for laterally confined and unconfined two-dimensional electron systems in strong magnetic fields. Physical Review B, 68, 125315.
  • Siddiki, A. ve Gerhardts, R. R. (2004). Incompressible strips in dissipative Hall bars as origin of quantized Hall plateaus. Physical Review B, 70, 195335.
  • Sohrmann, C. ve Römer, R. A. (2007). Compressibility stripes for mesoscopic quantum Hall samples. New Journal of Physics, 9, 97.
  • Weichselbaum, A. ve Ulloa, S. E. (2006). Tunability of qubit Coulomb interaction: Numerical analysis of top-gate depletion in two-dimensional electron systems. Physical Review B, 74, 085318.
  • Wulf, U., Gudmundsson, V. ve Gerhardts, R. R. (1988). Screening properties of the two-dimensional electron gas in the quantum Hall regime. Physical Review B, 38, 4218.
  • Zhang, Y., McClure, D. T., Levenson-Falk, E. M., Marcus, C. M., Pfeiffer, L. N., West, K. W. (2009). Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Physical Review B, 79, 241304(R).
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Deniz Ekşi 0000-0002-5523-4619

Project Number Yok
Publication Date March 1, 2023
Submission Date August 4, 2022
Acceptance Date December 16, 2022
Published in Issue Year 2023

Cite

APA Ekşi, D. (2023). İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı. Journal of the Institute of Science and Technology, 13(1), 278-284. https://doi.org/10.21597/jist.1155664
AMA Ekşi D. İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı. Iğdır Üniv. Fen Bil Enst. Der. March 2023;13(1):278-284. doi:10.21597/jist.1155664
Chicago Ekşi, Deniz. “İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları Ve Elektron Hızı”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 278-84. https://doi.org/10.21597/jist.1155664.
EndNote Ekşi D (March 1, 2023) İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı. Journal of the Institute of Science and Technology 13 1 278–284.
IEEE D. Ekşi, “İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 1, pp. 278–284, 2023, doi: 10.21597/jist.1155664.
ISNAD Ekşi, Deniz. “İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları Ve Elektron Hızı”. Journal of the Institute of Science and Technology 13/1 (March 2023), 278-284. https://doi.org/10.21597/jist.1155664.
JAMA Ekşi D. İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:278–284.
MLA Ekşi, Deniz. “İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları Ve Elektron Hızı”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 278-84, doi:10.21597/jist.1155664.
Vancouver Ekşi D. İki Farklı Metalik Kapı Yöntemiyle Oluşturulan Hall Bar’daki Sıkıştırılamaz Şeritlerin Kalınlıkları ve Elektron Hızı. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(1):278-84.