Research Article
BibTex RIS Cite
Year 2023, , 815 - 829, 01.06.2023
https://doi.org/10.21597/jist.1162980

Abstract

References

  • Apáez-Barrio, P, Pedraza-Santos, M.E., Rodríguez-Mendoza, M.N., Raya-Montaño, Y.A., & Jaén-Contreras, D. (2018). Yield and anthocyanin concentration in Hibiscus sabdariffa L. with foliar application of micronutrients. Revista Chapingo Serie Horticultura, 24(2), 107-120.
  • Asad, S.A., Farooq, M., Afzal, A., & West, H. (2019). Integrated phytobial heavy metals remediation strategies for a sustainable clean environment. Chemosphere, 217, 925-941.
  • Ashraf, M.Y., Roohi, M, Iqbal, Z, Ashraf, M, Öztürk, M., & Gücel, S (2016). Cadmium (Cd) and lead (Pb) ınduced changes in growth, some biochemical attributes, and mineral accumulation in two cultivars of mung bean (Vigna radiata (L.) Wilczek). Communication in Soil Sciences and PlantAnalysis, 47(4),405- 413.
  • Atmaca, Ç., & Sevimoğlu, O. (2020). Determination of city-based greenhouse gas emissions: the case study of Kocaeli Province. Journal of the Institute of Science and Technology, 10(3), 1616-1627.
  • Bates L.S., Waldren R.P, & Teare I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Bernardini, A., Salvatori, E., Guerrini, V., Fusaro, L., Canepari S., & Manes, F. (2016). Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions. İnternational Journal of Phytoremediation, 18,16-24.
  • Bingöl, Z. (2020). Dust emission from stone quarry and environmental permitting process. Journal of the Institute of Science and Technology, 10(1), 84-90.
  • Boudalı, G., Ghnaya, T., Ben-Aabdellah, S., Chalah A., Sebı, A., Ourghı, Z., & Chaffeı-Haoarı, C. (2022). Zincum metallicum, a homoeopathic drug, alleviates Zn-ınduced toxic effects, and promotes plant growth and antioxidant capacity in Lepidium sativum. Environmental Science and Pollution Research, 29(22),33872-33884.
  • Bradford, M.M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2), 248-254.
  • Cataldo, D.A., Haroon, M., Schrader, L.E., & Youngs, V.L. (1975). Rapid colourimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6,71-80.
  • Chadzinikolau, T., Kozłowska, M., & Mleczek, M. (2017). Induction of phytochelatins and flavonoids in Cadmium polluted Berberis thunbergii. Dendrobiology, 77, 139-146
  • Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M.H., & Masclaux-Daubresse, C. (2004). Cadmium toxicity ınduced changes in nitrogen management in lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiology, 5(11),1681-1693.
  • Chen, J., Shiyab, S., Han, F.X., Monts, D.L., Waggoner, A.W., & Su, Z.Y. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18, 110-121.
  • Chen, S., Wang, Q., Lu, H., Li, J., Yang, D., Liu, J, & Yan, C. (2019). Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicology and Environmental Safety, 169, 134-143.
  • Dadea, C., Bacchiocchi, S.C., Rocca, N., Mimmo, T., Russo, A., & Zerbe, S. (2016). Heavy metal accumulation in urban soils and deciduous trees in the City of Bolzano, N Italy. Waldökologie, Landschaftsforschung und Naturschutz. Forest Ecology, Landscape Research and Nature Conservation,15,35-42.
  • Danquah, A., de Zelicourt, A., Colcombet, J., & Hirt, H. (2014). The role of ABA and MAPK signalling pathways in plant abiotic stress responses. Biotechnology Advances, 32, 40-52.
  • De Silva, N.D.G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in japanese maple (Acer rubrum L.). Journal of Experimental Botany, 63(16), 5957-5966.
  • DeGasperis, B.G., & Motzkin, G. (2007). Windows of opportunity: Historical and ecological controls on Berberis thunbergii invasions. Ecology, 88, 3115-3125.
  • Dickerson, D..P, Pascholati, S.F., Hagerman, A.E., Butler, L.G., & Nicholson, R.L. (1984). Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111-123.
  • Dobrikova, A., Apostolova, E., Hanć, A., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I.S., & Moustakas, M. (2021).Tolerance mechanisms of the aromatic and medicinal plant Salvia sclarea L. to excess zinc. Plants, 10 (2), 194.
  • Głowacka, K., Zróbek-Sokolnik ,A., Okorski, A., & Najdzion, J. (2019). The effect of cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants, 8(10), 413.
  • Hachiya, T., & Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68(10), 2501-12.
  • Isinkaralar, K. (2022). Some atmospheric trace metals deposition in selected trees as a possible biomonitor. Romanian Biotechnological, 27(1),3227-3236.
  • Jain, D., Kour, R., & Bhojiya, A.A. (2020). Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Scientific Reports, 10(1), 13865.
  • Kandziora-Ciupa, M., Ciepał, R., Nadgoŕska-Socha, A., & Barczyk, G. (2016). Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology, 25, 70-981.
  • Kapoor, D., Singh, M.P., Kaur, S., Bhardwaj, R, Zheng, B, & Sharma, A. (2019). Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants, 8 (8), 260.
  • Kılıç, D.D., & İpek, A. (2019). Removal of lead pollution from treatment sludge by chelate supported phytoremediation method using some agricultural plant. Journal of the Institute of Science and Technology, 9(1), 458-467.
  • Koç, E., & İşlek, C. (2015). The effect of cadmium on phenylalanine ammonia lyase activity and lipid peroxidation in pepper (Capsicum annuum L.) seedlings. Artvin Coruh University Journal of Forestry Faculty, 16(1), 50-54.
  • Kopriva, S., Malagoli, M., & Takahashi, H. (2019). Sulfur nutrition: impacts on plant development, metabolism, and stress responses. Experimental Botany,70(16), 4069-4073
  • Kundu, D., Dey, S., & Sen Raychaudhuri, S.. (2018). Chromium (VI)- induced stress response in the plant Plantago ovata Forsk in vitro. Genes and Environment, 40, 21.
  • Küçük C, & Karaoğlu M, 2021. Heavy metal pollution in the agricultural soils alongside highway 080 of Igdir province. European Journal of Science and Technology, 25: 325-333.
  • Lichtenthaler, H.K., & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization b UV-VIS Spectroscopy. In Current Protocols in Food Analytical Chemistry, F4.3.1-F4.3.8.
  • Maillard A., Diquélou, S., Billard, V., Laîné, P., Garnica, M., Prudent, M., Garcia-Mina, J.M., Yvin, J.C., & Ourry, A. (2015). Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Science, 6, 317.
  • Mancinelli, A.L. (1990). Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiology, 92,1191-1195.
  • Modirroosta, S., Ardalan, M.M., & Bayramzadeh, V. (2014). Impact of soil cadmium contamination on accumulation of cadmium and proline content of Pinus sylvestris L. seedling. Agriculture Science Developments, 3,167-172.
  • Morales, A., & Kaiser, E. (2020). Photosynthetic acclimation to fluctuating irradiance in plants. Frontiers in Plant Sciences, 11, 268.
  • Moustaka, J., Tanou, G., Giannakoula, A., Adamakis, I.D.S., Panteris, E., Eleftheriou, E., & Moustakas, M. (2020). Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress. Environmental and Experimental Study, 175, 104065.
  • Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sarkar, B., Ghosh, P.D., & Mondal, T. (2013). Structural, physiological and biochemical profiling of tea plants (Camellia sinensis L.) O. Kuntze) under zinc stress. Biologia Plantarum, 57, 474-480.
  • Muradolu, F., Baytın, R., Başak, İ., & Akkuş, G. (2020).The effect of methyl jasmonate applications on some growth parameters in strawberry (Fragaria x ananassa “Camarosa”) plant under cadmium stress. Journal of the Institute of Science and Technology, 10(2), 714-722.
  • Pan, W., You ,Y., Weng, Y.N., Shentu, J.L., Lu, Q., Xu, Q.R., Liu, J., & TingDu A. (2020). Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants. Ecotoxicology and Environmental Safety, 190, 110104.
  • Park, S., Steen, C.J., Lyska, D., Fischer, A.L., Endelman, B., Iwai, M., Niyogi, K.K., & Fleming, G.R. (2019). Chlorophyll-carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proceeding of the National Academy of Sciences USA, 116 (9), 3385-3390.
  • Per, T.S., Masood, A., & Khan, N.A. (2016). Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide, 68, 111-124.
  • Rady, M., Taha, R.S., & Mahdi, A.H. (2016). Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress. South African Journal of Botany, 102, 221-227.
  • Rucinśka-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38 (11), 57.
  • Singh, S., Parihar, P., Singh, R, Singh, V.P., & Prasad, S.M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ıonomics. Frontiers in Plant Sciences, 6, 1143.
  • Singleton, V.L., Orthofer, R., & Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymology, 299, 152-178.
  • Song, Y., Jin, L., & Wang, X. (20199. Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19,133-141.
  • Subba, P., Mukhopadhyay, M., Mahato, S.K., Bhutia, K.D., Mondal, T.K., & Ghosh S.K. (2014). Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20(4), 461-473
  • Turfan, N., Kunaz, A., & Sarıyıldız, T. (2021).Effect of air pollution on element profile and radioactive compounds in six tree species. Tree and Forest, 2(2),82-92.
  • Turkyilmaz, A., Sevik, H., Isinkaralar, K., & Cetin, M. (2018). Using Acer platanoides annual rings to monitor the amount of heavy metals accumulated in air. Environmental Monitoring and Assessment, 190 (10), 578.
  • Yang Y., Zhang L., Huang X., Zhou Y., Quan Q., & Li Y. (2020). Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE, 15(3),e0228563.
  • Yee, Q., Muhr, J., & Steudle, E. (2005). A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell and Environment, 28,525-535.
  • Yoo, H.C., Yu, Y.C., Sung, Y., & Han, J. (2020). Glutamine reliance in cell metabolism. Experimental & Molecular Medicine, 52,1496-1516.
  • Yucedag, C., Ozel, H.B., Cetin, M., & Sevik, H. (2019). Variability in morphological traits of seedlings from five Euonymus japonicus cultivars. Environmental Monitoring and Assessment, 192 (5),285.
  • Zemanová, V., Pavlík, M., Pavlíková, D., & Tlustoš, P. (2013). The changes of contents of selected free amino acids associated with cadmium stress in Noccaea caerulescens and Arabidopsis halleri. Plant Soil Environment, 59, 417-422.
  • Zhang, Q., Zhang, M., & Ding, Y. (2018). Composition of photosynthetic pigments and photosynthetic characteristics in green and yellow sectors of the variegated, Aucuba japonica, ‘Variegata’ leaves. Flora, 240, 25-33.
  • Zhang, T., Bai, Y., Hong, X., Sun, L., Liu, Y. (2017). Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLoS ONE, 12(6), e0179840.
  • Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H, Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports, 11, 991

Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species

Year 2023, , 815 - 829, 01.06.2023
https://doi.org/10.21597/jist.1162980

Abstract

In the present study, the effects of cadmium (25 μM and 50 μM) and zinc (200 μM and 400 μM) treatments on some bioactive compounds and mineral levels in leaves of japanese barberry, boxwood, and gold tassel genotypes were investigated. Given the results, it was determined that photosynthetic pigments were stimulated by 200 μM Zn and 400 μM Zn. Boxwood was found to be tolerant to the treatments in terms of chlorophyll and carotenoid. In contrast, japanese barberry was found to be tolerant in terms of chlorophyll b and total chlorophyll. The amount of anthocyanin was higher in the leaves of gold tassel, and boxwood and the total phenolic was higher level in gold tassel and japanese barberry in all treatments. Proline and nitrate levels were generally high in the treated groups of three plants, as well as RWC in japanese barberry and boxwood. Given the element results, japanese barberry had a higher accumulation capacity for P, S, Mn, Cl, Cd, Fe, Al, Si, Cu, Ba, Zn, Ti, and Cr, boxwood for K, Mn, Cl, Cd, Zn, Fe, Al, Si, and Cr, and Gold tassel for K, P, S, Mn, Cl, and Cd. As a result, boxwood showed a higher tolerance to 400 μM Zn, japanese barberry plant to 200 μM Zn, and 50 μM Cd. It can be said that boxwood and japanese barberry plants can be used in afforestation projects in urban parks, gardens, and roadside, as well as in areas with high soil pollution, to reduce the pollution damage.

References

  • Apáez-Barrio, P, Pedraza-Santos, M.E., Rodríguez-Mendoza, M.N., Raya-Montaño, Y.A., & Jaén-Contreras, D. (2018). Yield and anthocyanin concentration in Hibiscus sabdariffa L. with foliar application of micronutrients. Revista Chapingo Serie Horticultura, 24(2), 107-120.
  • Asad, S.A., Farooq, M., Afzal, A., & West, H. (2019). Integrated phytobial heavy metals remediation strategies for a sustainable clean environment. Chemosphere, 217, 925-941.
  • Ashraf, M.Y., Roohi, M, Iqbal, Z, Ashraf, M, Öztürk, M., & Gücel, S (2016). Cadmium (Cd) and lead (Pb) ınduced changes in growth, some biochemical attributes, and mineral accumulation in two cultivars of mung bean (Vigna radiata (L.) Wilczek). Communication in Soil Sciences and PlantAnalysis, 47(4),405- 413.
  • Atmaca, Ç., & Sevimoğlu, O. (2020). Determination of city-based greenhouse gas emissions: the case study of Kocaeli Province. Journal of the Institute of Science and Technology, 10(3), 1616-1627.
  • Bates L.S., Waldren R.P, & Teare I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Bernardini, A., Salvatori, E., Guerrini, V., Fusaro, L., Canepari S., & Manes, F. (2016). Effects of high Zn and Pb concentrations on Phragmites australis (Cav.) Trin. Ex. Steudel: Photosynthetic performance and metal accumulation capacity under controlled conditions. İnternational Journal of Phytoremediation, 18,16-24.
  • Bingöl, Z. (2020). Dust emission from stone quarry and environmental permitting process. Journal of the Institute of Science and Technology, 10(1), 84-90.
  • Boudalı, G., Ghnaya, T., Ben-Aabdellah, S., Chalah A., Sebı, A., Ourghı, Z., & Chaffeı-Haoarı, C. (2022). Zincum metallicum, a homoeopathic drug, alleviates Zn-ınduced toxic effects, and promotes plant growth and antioxidant capacity in Lepidium sativum. Environmental Science and Pollution Research, 29(22),33872-33884.
  • Bradford, M.M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2), 248-254.
  • Cataldo, D.A., Haroon, M., Schrader, L.E., & Youngs, V.L. (1975). Rapid colourimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6,71-80.
  • Chadzinikolau, T., Kozłowska, M., & Mleczek, M. (2017). Induction of phytochelatins and flavonoids in Cadmium polluted Berberis thunbergii. Dendrobiology, 77, 139-146
  • Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M.H., & Masclaux-Daubresse, C. (2004). Cadmium toxicity ınduced changes in nitrogen management in lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiology, 5(11),1681-1693.
  • Chen, J., Shiyab, S., Han, F.X., Monts, D.L., Waggoner, A.W., & Su, Z.Y. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18, 110-121.
  • Chen, S., Wang, Q., Lu, H., Li, J., Yang, D., Liu, J, & Yan, C. (2019). Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicology and Environmental Safety, 169, 134-143.
  • Dadea, C., Bacchiocchi, S.C., Rocca, N., Mimmo, T., Russo, A., & Zerbe, S. (2016). Heavy metal accumulation in urban soils and deciduous trees in the City of Bolzano, N Italy. Waldökologie, Landschaftsforschung und Naturschutz. Forest Ecology, Landscape Research and Nature Conservation,15,35-42.
  • Danquah, A., de Zelicourt, A., Colcombet, J., & Hirt, H. (2014). The role of ABA and MAPK signalling pathways in plant abiotic stress responses. Biotechnology Advances, 32, 40-52.
  • De Silva, N.D.G., Cholewa, E., & Ryser, P. (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in japanese maple (Acer rubrum L.). Journal of Experimental Botany, 63(16), 5957-5966.
  • DeGasperis, B.G., & Motzkin, G. (2007). Windows of opportunity: Historical and ecological controls on Berberis thunbergii invasions. Ecology, 88, 3115-3125.
  • Dickerson, D..P, Pascholati, S.F., Hagerman, A.E., Butler, L.G., & Nicholson, R.L. (1984). Phenylalanine ammonia-lyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiological Plant Pathology, 25, 111-123.
  • Dobrikova, A., Apostolova, E., Hanć, A., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I.S., & Moustakas, M. (2021).Tolerance mechanisms of the aromatic and medicinal plant Salvia sclarea L. to excess zinc. Plants, 10 (2), 194.
  • Głowacka, K., Zróbek-Sokolnik ,A., Okorski, A., & Najdzion, J. (2019). The effect of cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants, 8(10), 413.
  • Hachiya, T., & Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68(10), 2501-12.
  • Isinkaralar, K. (2022). Some atmospheric trace metals deposition in selected trees as a possible biomonitor. Romanian Biotechnological, 27(1),3227-3236.
  • Jain, D., Kour, R., & Bhojiya, A.A. (2020). Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Scientific Reports, 10(1), 13865.
  • Kandziora-Ciupa, M., Ciepał, R., Nadgoŕska-Socha, A., & Barczyk, G. (2016). Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology, 25, 70-981.
  • Kapoor, D., Singh, M.P., Kaur, S., Bhardwaj, R, Zheng, B, & Sharma, A. (2019). Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants, 8 (8), 260.
  • Kılıç, D.D., & İpek, A. (2019). Removal of lead pollution from treatment sludge by chelate supported phytoremediation method using some agricultural plant. Journal of the Institute of Science and Technology, 9(1), 458-467.
  • Koç, E., & İşlek, C. (2015). The effect of cadmium on phenylalanine ammonia lyase activity and lipid peroxidation in pepper (Capsicum annuum L.) seedlings. Artvin Coruh University Journal of Forestry Faculty, 16(1), 50-54.
  • Kopriva, S., Malagoli, M., & Takahashi, H. (2019). Sulfur nutrition: impacts on plant development, metabolism, and stress responses. Experimental Botany,70(16), 4069-4073
  • Kundu, D., Dey, S., & Sen Raychaudhuri, S.. (2018). Chromium (VI)- induced stress response in the plant Plantago ovata Forsk in vitro. Genes and Environment, 40, 21.
  • Küçük C, & Karaoğlu M, 2021. Heavy metal pollution in the agricultural soils alongside highway 080 of Igdir province. European Journal of Science and Technology, 25: 325-333.
  • Lichtenthaler, H.K., & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization b UV-VIS Spectroscopy. In Current Protocols in Food Analytical Chemistry, F4.3.1-F4.3.8.
  • Maillard A., Diquélou, S., Billard, V., Laîné, P., Garnica, M., Prudent, M., Garcia-Mina, J.M., Yvin, J.C., & Ourry, A. (2015). Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front Plant Science, 6, 317.
  • Mancinelli, A.L. (1990). Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiology, 92,1191-1195.
  • Modirroosta, S., Ardalan, M.M., & Bayramzadeh, V. (2014). Impact of soil cadmium contamination on accumulation of cadmium and proline content of Pinus sylvestris L. seedling. Agriculture Science Developments, 3,167-172.
  • Morales, A., & Kaiser, E. (2020). Photosynthetic acclimation to fluctuating irradiance in plants. Frontiers in Plant Sciences, 11, 268.
  • Moustaka, J., Tanou, G., Giannakoula, A., Adamakis, I.D.S., Panteris, E., Eleftheriou, E., & Moustakas, M. (2020). Anthocyanin accumulation in poinsettia leaves and its functional role in photo-oxidative stress. Environmental and Experimental Study, 175, 104065.
  • Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sarkar, B., Ghosh, P.D., & Mondal, T. (2013). Structural, physiological and biochemical profiling of tea plants (Camellia sinensis L.) O. Kuntze) under zinc stress. Biologia Plantarum, 57, 474-480.
  • Muradolu, F., Baytın, R., Başak, İ., & Akkuş, G. (2020).The effect of methyl jasmonate applications on some growth parameters in strawberry (Fragaria x ananassa “Camarosa”) plant under cadmium stress. Journal of the Institute of Science and Technology, 10(2), 714-722.
  • Pan, W., You ,Y., Weng, Y.N., Shentu, J.L., Lu, Q., Xu, Q.R., Liu, J., & TingDu A. (2020). Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants. Ecotoxicology and Environmental Safety, 190, 110104.
  • Park, S., Steen, C.J., Lyska, D., Fischer, A.L., Endelman, B., Iwai, M., Niyogi, K.K., & Fleming, G.R. (2019). Chlorophyll-carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proceeding of the National Academy of Sciences USA, 116 (9), 3385-3390.
  • Per, T.S., Masood, A., & Khan, N.A. (2016). Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide, 68, 111-124.
  • Rady, M., Taha, R.S., & Mahdi, A.H. (2016). Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress. South African Journal of Botany, 102, 221-227.
  • Rucinśka-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38 (11), 57.
  • Singh, S., Parihar, P., Singh, R, Singh, V.P., & Prasad, S.M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ıonomics. Frontiers in Plant Sciences, 6, 1143.
  • Singleton, V.L., Orthofer, R., & Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymology, 299, 152-178.
  • Song, Y., Jin, L., & Wang, X. (20199. Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation, 19,133-141.
  • Subba, P., Mukhopadhyay, M., Mahato, S.K., Bhutia, K.D., Mondal, T.K., & Ghosh S.K. (2014). Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. Physiology and Molecular Biology of Plants, 20(4), 461-473
  • Turfan, N., Kunaz, A., & Sarıyıldız, T. (2021).Effect of air pollution on element profile and radioactive compounds in six tree species. Tree and Forest, 2(2),82-92.
  • Turkyilmaz, A., Sevik, H., Isinkaralar, K., & Cetin, M. (2018). Using Acer platanoides annual rings to monitor the amount of heavy metals accumulated in air. Environmental Monitoring and Assessment, 190 (10), 578.
  • Yang Y., Zhang L., Huang X., Zhou Y., Quan Q., & Li Y. (2020). Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE, 15(3),e0228563.
  • Yee, Q., Muhr, J., & Steudle, E. (2005). A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell and Environment, 28,525-535.
  • Yoo, H.C., Yu, Y.C., Sung, Y., & Han, J. (2020). Glutamine reliance in cell metabolism. Experimental & Molecular Medicine, 52,1496-1516.
  • Yucedag, C., Ozel, H.B., Cetin, M., & Sevik, H. (2019). Variability in morphological traits of seedlings from five Euonymus japonicus cultivars. Environmental Monitoring and Assessment, 192 (5),285.
  • Zemanová, V., Pavlík, M., Pavlíková, D., & Tlustoš, P. (2013). The changes of contents of selected free amino acids associated with cadmium stress in Noccaea caerulescens and Arabidopsis halleri. Plant Soil Environment, 59, 417-422.
  • Zhang, Q., Zhang, M., & Ding, Y. (2018). Composition of photosynthetic pigments and photosynthetic characteristics in green and yellow sectors of the variegated, Aucuba japonica, ‘Variegata’ leaves. Flora, 240, 25-33.
  • Zhang, T., Bai, Y., Hong, X., Sun, L., Liu, Y. (2017). Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLoS ONE, 12(6), e0179840.
  • Zhao, H., Guan, J., Liang, Q., Zhang, X., Hu, H, Zhang, J. (2021). Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Scientific Reports, 11, 991
There are 58 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Erkan Genç 0000-0002-8633-1251

Nezahat Turfan 0000-0002-5753-0390

Early Pub Date May 27, 2023
Publication Date June 1, 2023
Submission Date August 16, 2022
Acceptance Date March 1, 2023
Published in Issue Year 2023

Cite

APA Genç, E., & Turfan, N. (2023). Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species. Journal of the Institute of Science and Technology, 13(2), 815-829. https://doi.org/10.21597/jist.1162980
AMA Genç E, Turfan N. Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species. Iğdır Üniv. Fen Bil Enst. Der. June 2023;13(2):815-829. doi:10.21597/jist.1162980
Chicago Genç, Erkan, and Nezahat Turfan. “Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese Barberry (Berberis thunbergii), Boxwood (Buxus Sempervirens Var. rotundifolia), and Gold Tassel (Euonymus Japonica Var. Aurea) Species”. Journal of the Institute of Science and Technology 13, no. 2 (June 2023): 815-29. https://doi.org/10.21597/jist.1162980.
EndNote Genç E, Turfan N (June 1, 2023) Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species. Journal of the Institute of Science and Technology 13 2 815–829.
IEEE E. Genç and N. Turfan, “Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 2, pp. 815–829, 2023, doi: 10.21597/jist.1162980.
ISNAD Genç, Erkan - Turfan, Nezahat. “Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese Barberry (Berberis thunbergii), Boxwood (Buxus Sempervirens Var. rotundifolia), and Gold Tassel (Euonymus Japonica Var. Aurea) Species”. Journal of the Institute of Science and Technology 13/2 (June 2023), 815-829. https://doi.org/10.21597/jist.1162980.
JAMA Genç E, Turfan N. Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:815–829.
MLA Genç, Erkan and Nezahat Turfan. “Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese Barberry (Berberis thunbergii), Boxwood (Buxus Sempervirens Var. rotundifolia), and Gold Tassel (Euonymus Japonica Var. Aurea) Species”. Journal of the Institute of Science and Technology, vol. 13, no. 2, 2023, pp. 815-29, doi:10.21597/jist.1162980.
Vancouver Genç E, Turfan N. Effects of Cd and Zn Treatments on Leaf Chemıcal Compounds of Japanese barberry (Berberis thunbergii), Boxwood (Buxus sempervirens var. rotundifolia), and Gold tassel (Euonymus japonica var. aurea) Species. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(2):815-29.