Research Article
BibTex RIS Cite

An Improved Control Method for Current Harmonics, Reactive Power Compensation and Effective Power Flow with Active Power Filter

Year 2023, , 995 - 1004, 01.06.2023
https://doi.org/10.21597/jist.1211682

Abstract

Various residential loads such as inductors, capacitors, transformers, rectifiers, uninterruptible power supplies, electrical machines and fluorescent lights result in power factor deterioration and harmonics. Reactive loads linked to the electrical power systems produce reactive power, which declines the current/power quality and power factor in the main network. Therefore, adequate reactive power is required to provide a stable and reliable electric grid. In this paper, an improved control method is proposed to eliminate harmonic effects of different loads, to provide reactive power compensation and effective reactive power flow with a three-phase shunt active power filter (SAPF). The performance results of the proposed control method is examined and compared with the conventional control under comprehensive case studies such as resistive-capacitive linear load (R-CLL), resistive-inductive linear load (R-ILL), non-linear load (NLL) and highly inductive NLL. With the proposed control method, the SAPF supplies adequate reactive power without being drawn power from the main grid to provide a high power factor. Various case studies indicate that the proposed control method can decrease phase discrepancy between grid current and voltage as well as reduce grid current harmonics. Under the impact of different load groups, approximately 0.99 power factor values have been obtained by the proposed control method, while lower power factor values such as 0.79 and 0.81 have been obtained by the conventional control method. In addition, with the proposed control method, the effect of different harmonic loads has been eliminated and the THB of current harmonics has been reduced below 1.0%.

References

  • Afonso, J. L., Couto, C., Martins, J. S. (2000). Active filters with control based on the pq theory. IEEE Industrial Electronics Society Newsletter, 47(3), 5-10.
  • Ahmed, H., Çelik, D. (2022). Sliding mode based adaptive linear neuron proportional resonant control of Vienna rectifier for performance improvement of electric vehicle charging system. Journal of Power Sources, 542, 231788.
  • Alberta Electrical System Operator (AESO), ISO Rules, Part 500Facilities, Division 502 Technical Requirements, Section 502.1 WindAggregated Generating Facilities, T echnical Requirements, Calgary,AB: AESO, 2013-04-30.
  • Chilipi, R. S. R., Al Sayari, N., Al Hosani, K. H., Beig, A. R., (2017). Adaptive notch filter-based multipurpose control scheme for grid-interfaced three-phase four-wire DG inverter. IEEE Transactions on Industry Applications, 53(4), 4015-4027.
  • Chilipi, R., Al Sayari, N., Al Hosani, K., Fasil, M., Beig, A. R. (2018). Third order sinusoidal integrator (TOSSI)-based control algorithm for shunt active power filter under distorted and unbalanced voltage conditions. International Journal of Electrical Power & Energy Systems, 96, 152-162.
  • Chilipi, R., Al Sayari, N., Alsawalhi, J. Y. (2019). Control of single-phase solar power generation system with universal active power filter capabilities using least mean mixed-norm (LMMN)-based adaptive filtering method. IEEE Transactions on Sustainable Energy, 11(2), 879-893.
  • Cossutta, P., Aguirre, M. P., Cao, A., Raffo, S., Valla, M. I. (2015). Single-stage fuel cell to grid interface with multilevel current-source inverters. IEEE Transactions on Industrial Electronics, 62(8), 5256-5264.
  • Çelik, D. (2022). Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. International Journal of Electrical Power & Energy Systems, 136, 107564.
  • Kürker, F. (2022). Lineer olmayan yüklerin sebep olduğu harmoniklerin ve fazlar arası güç dengesizliğinin nötr akımına etkisi. Journal of the Institute of Science and Technology, 12(3), 1456-1467.
  • Fan, Y., Zhou, Q., Wang, J., Mu, S., Wang, L. (2021). Application of superconducting-magnetic-energy-storage-based current-source active power filter in photovoltaics for harmonic mitigation. IEEE Transactions on Applied Superconductivity, 31(8), 1-4.
  • Ferreira, S. C., Gonzatti, R. B., Pereira, R. R., da Silva, C. H., da Silva, L. B., Lambert-Torres, G. (2018). Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters. IEEE Transactions on Industrial Electronics, 65(3), 2608-2617.
  • Golla, M., Thangavel, S., Simon, S. P., Padhy, N. P. (2023). A novel control scheme using UAPF in an ıntegrated PV grid-tied system. IEEE Transactions on Power Delivery, 38 (1), 133 - 145.
  • Gong, C., Sou, W. K., Lam, C. S. (2022). Observer based second-order sliding mode current controller for thyristor-controlled LC-coupling hybrid active power filter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1-13.
  • Hasan, K., Othman, M. M., Meraj, S. T., Rahman, N. F. A., Noor, S. Z. M., Musirin, I., Abidin, I. Z. (2022). Online harmonic extraction and synchronization algorithm based control for unified power quality conditioner for microgrid systems. Energy Reports, 8, 962-971.
  • Hoon, Y., Radzi, M. A. M., Hassan, M. K., Mailah, N. F. (2018). Operation of three-level inverter-based shunt active power filter under nonideal grid voltage conditions with dual fundamental component extraction. IEEE Transactions on Power Electronics, 33(9), 7558-7570.
  • İnci, M. (2020). Active/reactive energy control scheme for grid-connected fuel cell system with local inductive loads. Energy, 197, 117191.
  • Koroglu, T., Tan, A., Savrun, M. M., Cuma, M.U., Bayindir, K.C., Tumay, M. (2019). Implementation of a novel hybrid UPQC topology endowed with an isolated bidirectional DC–DC converter at DC link. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 2733-2746.
  • Meraj, S. T., Yahaya, N. Z., Hasan, K., Lipu, M. H., Elavarasan, R. M., Hussain, A. (2022). A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability. Applied Energy, 312, 118784.
  • Mishra, A. K., Das, S. R., Ray, P. K., Mallick, R. K., Mohanty, A., Mishra, D. K. (2020). PSO-GWO optimized fractional order PID based hybrid shunt active power filter for power quality improvements. IEEE Access 8, 74497-74512.
  • Mishra, M. K., Lal, V. N. (2022). An enhanced control strategy to mitigate grid current harmonics and power ripples of grid-tied pv system without pll under distorted grid voltages. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 4587-4602.
  • Moeini, A., Dabbaghjamanesh, M., Kimball, J. W., Zhang, J. (2022). Artificial neural networks for asymmetric selective harmonic current mitigation-PWM in active power filters to meet power quality standards. IEEE Transactions on Industry Applications, 1-9.
  • Ouchen, S., Benbouzid, M., Blaabjerg, F., Betka, A., Steinhart, H. (2021). Direct power control of shunt active power filter using space vector modulation based on supertwisting sliding mode control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), 3243-3253.
  • Pichan, M., Seyyedhosseini, M., Hafezi, H. (2022). A new deadbeat-based direct power control of shunt active power filter with digital ımplementation delay compensation. IEEE Access, 10, 72866-72878.
  • Soumana, R. A., Saulo, M. J., Muriithi, C. M. (2022). A new control scheme for limiting the compensation current and prioritizing power injection in multifunctional grid-connected photovoltaic systems. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2, 100055.
  • Shu, Z., Xie, S., Li, Q. (2011). Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system. IEEE Transactions on Power Electronics, 26(2), 334-343.
  • Tareen, W. U. K., Mekhielf, S. (2018). Three-phase transformerless shunt active power filter with reduced switch count for harmonic compensation in grid-connected applications. IEEE Transactions on Power Electronics, 33(6), 4868-4881.
  • Tekin, M. (2022). OG-AG Elektrik şebekelerinde dinamik kontrollü kompanzasyon uygulaması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 480-490.
  • Tekin, M., Keçecioğlu, Ö. F., Erafşar, Ö., Şekkeli, M. (2016). Bir Hidroelektrik Santralin (HES) Elektrik Şebekesindeki Harmonik Oluşumuna Etkisinin İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19(2), 70-77.
  • Yazdani, D., Bakhshai, A., Joos G., Mojiri, M. (2008). A nonlinear adaptive synchronization techniquefor grid-connected distributed energy sources. IEEE Transactions on power electronics, 23(4), 2181-2186.

Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi

Year 2023, , 995 - 1004, 01.06.2023
https://doi.org/10.21597/jist.1211682

Abstract

İndüktörler, kapasitörler, transformatörler, doğrultucular, kesintisiz güç kaynakları, elektrikli makineleri ve flüoresan lambalar gibi çeşitli konut yükleri, güç faktörünün bozulmasına ve harmoniklere neden olmaktadırlar. Elektrik güç sistemlerine bağlı reaktif yükler, ana şebekedeki akım/güç kalitesini ve güç faktörünü azaltan reaktif güç üretmektedirler. Bu nedenle, istikrarlı ve güvenilir bir elektrik şebekesi için yeterli reaktif güç sağlanması gerekir. Bu bağlamda, bu makalede üç fazlı şönt aktif güç filtresi (ŞAGF) ile farklı yüklerin harmonik etkilerinin ortadan kaldırılması, reaktif güç kompanzasyonun ve etkili bir şekilde reaktif güç akışını sağlanması için geliştirilmiş bir kontrol yöntemi önerilmiştir. Önerilen kontrol yönteminin performans sonuçları, dirençli-kapasitif doğrusal yük (D-KDY), dirençli-endüktif doğrusal yük (D-EDY), doğrusal olmayan yük (DOY) ve yüksek endüktif DOY gibi kapsamlı durum çalışmaları altında incelenmiş ve geleneksel kontrol yöntemi ile karşılaştırılmıştır. Önerilen kontrol yöntemi ile yüksek bir güç faktörü sağlamak için ana şebekeden güç çekmeden ŞAGF yeterli reaktif güç sağlamaktadır. Çeşitli durum çalışmaları, önerilen kontrol yöntemi şebeke akımı ve gerilimi arasındaki faz uyumsuzluğunu azaltabileceğini ve şebeke akımı harmoniklerini azaltabileceğini göstermektedir. Farklı yük grupları etkisi altında, önerilen kontrol yöntemi ile yaklaşık 0.99 güç faktörü değeri elde edilirken geleneksel kontrol yöntemi ile 0.79 ve 0.81 gibi daha düşük güç faktörü değerleri elde edilmiştir. Ayrıca önerilen kontrol yöntemi ile farklı harmonik yüklerin etkisi ortadan kaldırılarak akım harmoniklerinin THB’ si %1.0 seviyesinin altına düşürülmüştür.

References

  • Afonso, J. L., Couto, C., Martins, J. S. (2000). Active filters with control based on the pq theory. IEEE Industrial Electronics Society Newsletter, 47(3), 5-10.
  • Ahmed, H., Çelik, D. (2022). Sliding mode based adaptive linear neuron proportional resonant control of Vienna rectifier for performance improvement of electric vehicle charging system. Journal of Power Sources, 542, 231788.
  • Alberta Electrical System Operator (AESO), ISO Rules, Part 500Facilities, Division 502 Technical Requirements, Section 502.1 WindAggregated Generating Facilities, T echnical Requirements, Calgary,AB: AESO, 2013-04-30.
  • Chilipi, R. S. R., Al Sayari, N., Al Hosani, K. H., Beig, A. R., (2017). Adaptive notch filter-based multipurpose control scheme for grid-interfaced three-phase four-wire DG inverter. IEEE Transactions on Industry Applications, 53(4), 4015-4027.
  • Chilipi, R., Al Sayari, N., Al Hosani, K., Fasil, M., Beig, A. R. (2018). Third order sinusoidal integrator (TOSSI)-based control algorithm for shunt active power filter under distorted and unbalanced voltage conditions. International Journal of Electrical Power & Energy Systems, 96, 152-162.
  • Chilipi, R., Al Sayari, N., Alsawalhi, J. Y. (2019). Control of single-phase solar power generation system with universal active power filter capabilities using least mean mixed-norm (LMMN)-based adaptive filtering method. IEEE Transactions on Sustainable Energy, 11(2), 879-893.
  • Cossutta, P., Aguirre, M. P., Cao, A., Raffo, S., Valla, M. I. (2015). Single-stage fuel cell to grid interface with multilevel current-source inverters. IEEE Transactions on Industrial Electronics, 62(8), 5256-5264.
  • Çelik, D. (2022). Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. International Journal of Electrical Power & Energy Systems, 136, 107564.
  • Kürker, F. (2022). Lineer olmayan yüklerin sebep olduğu harmoniklerin ve fazlar arası güç dengesizliğinin nötr akımına etkisi. Journal of the Institute of Science and Technology, 12(3), 1456-1467.
  • Fan, Y., Zhou, Q., Wang, J., Mu, S., Wang, L. (2021). Application of superconducting-magnetic-energy-storage-based current-source active power filter in photovoltaics for harmonic mitigation. IEEE Transactions on Applied Superconductivity, 31(8), 1-4.
  • Ferreira, S. C., Gonzatti, R. B., Pereira, R. R., da Silva, C. H., da Silva, L. B., Lambert-Torres, G. (2018). Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters. IEEE Transactions on Industrial Electronics, 65(3), 2608-2617.
  • Golla, M., Thangavel, S., Simon, S. P., Padhy, N. P. (2023). A novel control scheme using UAPF in an ıntegrated PV grid-tied system. IEEE Transactions on Power Delivery, 38 (1), 133 - 145.
  • Gong, C., Sou, W. K., Lam, C. S. (2022). Observer based second-order sliding mode current controller for thyristor-controlled LC-coupling hybrid active power filter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1-13.
  • Hasan, K., Othman, M. M., Meraj, S. T., Rahman, N. F. A., Noor, S. Z. M., Musirin, I., Abidin, I. Z. (2022). Online harmonic extraction and synchronization algorithm based control for unified power quality conditioner for microgrid systems. Energy Reports, 8, 962-971.
  • Hoon, Y., Radzi, M. A. M., Hassan, M. K., Mailah, N. F. (2018). Operation of three-level inverter-based shunt active power filter under nonideal grid voltage conditions with dual fundamental component extraction. IEEE Transactions on Power Electronics, 33(9), 7558-7570.
  • İnci, M. (2020). Active/reactive energy control scheme for grid-connected fuel cell system with local inductive loads. Energy, 197, 117191.
  • Koroglu, T., Tan, A., Savrun, M. M., Cuma, M.U., Bayindir, K.C., Tumay, M. (2019). Implementation of a novel hybrid UPQC topology endowed with an isolated bidirectional DC–DC converter at DC link. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(3), 2733-2746.
  • Meraj, S. T., Yahaya, N. Z., Hasan, K., Lipu, M. H., Elavarasan, R. M., Hussain, A. (2022). A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability. Applied Energy, 312, 118784.
  • Mishra, A. K., Das, S. R., Ray, P. K., Mallick, R. K., Mohanty, A., Mishra, D. K. (2020). PSO-GWO optimized fractional order PID based hybrid shunt active power filter for power quality improvements. IEEE Access 8, 74497-74512.
  • Mishra, M. K., Lal, V. N. (2022). An enhanced control strategy to mitigate grid current harmonics and power ripples of grid-tied pv system without pll under distorted grid voltages. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(4), 4587-4602.
  • Moeini, A., Dabbaghjamanesh, M., Kimball, J. W., Zhang, J. (2022). Artificial neural networks for asymmetric selective harmonic current mitigation-PWM in active power filters to meet power quality standards. IEEE Transactions on Industry Applications, 1-9.
  • Ouchen, S., Benbouzid, M., Blaabjerg, F., Betka, A., Steinhart, H. (2021). Direct power control of shunt active power filter using space vector modulation based on supertwisting sliding mode control. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(3), 3243-3253.
  • Pichan, M., Seyyedhosseini, M., Hafezi, H. (2022). A new deadbeat-based direct power control of shunt active power filter with digital ımplementation delay compensation. IEEE Access, 10, 72866-72878.
  • Soumana, R. A., Saulo, M. J., Muriithi, C. M. (2022). A new control scheme for limiting the compensation current and prioritizing power injection in multifunctional grid-connected photovoltaic systems. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 2, 100055.
  • Shu, Z., Xie, S., Li, Q. (2011). Single-phase back-to-back converter for active power balancing, reactive power compensation, and harmonic filtering in traction power system. IEEE Transactions on Power Electronics, 26(2), 334-343.
  • Tareen, W. U. K., Mekhielf, S. (2018). Three-phase transformerless shunt active power filter with reduced switch count for harmonic compensation in grid-connected applications. IEEE Transactions on Power Electronics, 33(6), 4868-4881.
  • Tekin, M. (2022). OG-AG Elektrik şebekelerinde dinamik kontrollü kompanzasyon uygulaması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 480-490.
  • Tekin, M., Keçecioğlu, Ö. F., Erafşar, Ö., Şekkeli, M. (2016). Bir Hidroelektrik Santralin (HES) Elektrik Şebekesindeki Harmonik Oluşumuna Etkisinin İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 19(2), 70-77.
  • Yazdani, D., Bakhshai, A., Joos G., Mojiri, M. (2008). A nonlinear adaptive synchronization techniquefor grid-connected distributed energy sources. IEEE Transactions on power electronics, 23(4), 2181-2186.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Doğan Çelik 0000-0002-8348-130X

Early Pub Date May 27, 2023
Publication Date June 1, 2023
Submission Date November 29, 2022
Acceptance Date January 18, 2023
Published in Issue Year 2023

Cite

APA Çelik, D. (2023). Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi. Journal of the Institute of Science and Technology, 13(2), 995-1004. https://doi.org/10.21597/jist.1211682
AMA Çelik D. Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi. Iğdır Üniv. Fen Bil Enst. Der. June 2023;13(2):995-1004. doi:10.21597/jist.1211682
Chicago Çelik, Doğan. “Aktif Güç Filtresi Ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu Ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi”. Journal of the Institute of Science and Technology 13, no. 2 (June 2023): 995-1004. https://doi.org/10.21597/jist.1211682.
EndNote Çelik D (June 1, 2023) Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi. Journal of the Institute of Science and Technology 13 2 995–1004.
IEEE D. Çelik, “Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 2, pp. 995–1004, 2023, doi: 10.21597/jist.1211682.
ISNAD Çelik, Doğan. “Aktif Güç Filtresi Ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu Ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi”. Journal of the Institute of Science and Technology 13/2 (June 2023), 995-1004. https://doi.org/10.21597/jist.1211682.
JAMA Çelik D. Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:995–1004.
MLA Çelik, Doğan. “Aktif Güç Filtresi Ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu Ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi”. Journal of the Institute of Science and Technology, vol. 13, no. 2, 2023, pp. 995-1004, doi:10.21597/jist.1211682.
Vancouver Çelik D. Aktif Güç Filtresi ile Akım Harmonikleri, Reaktif Güç Kompanzasyonu ve Etkili Güç Akışı için Geliştirilmiş Bir Kontrol Yöntemi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(2):995-1004.