Research Article
BibTex RIS Cite
Year 2023, , 1784 - 1798, 01.09.2023
https://doi.org/10.21597/jist.1218178

Abstract

References

  • AFAD, (2022). Republic of Turkey Prime Ministry, Disaster and Emergency Management Presidency, Earthquake Department, https://tdth.afad.gov.tr/TDTH/main.xhtml
  • Aiello, M. A., Micelli, F., Valente, L. (2007). Structural upgrading of masonry columns by using composite reinforcements. Journal of Composites for Construction, 11:650–658. doi: 10.1061/(asce)1090-0268(2007)11:6(650)
  • ANSYS Workbench, 2022. Finite Element Software, US.
  • ASTM A36/A36M-19. Standard Specification for Carbon Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
  • ASTM A572/A572M-21. Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
  • Bertetto A. M., Grosso, B., Ricciu, R., Rizzu, D. (2014). Anisotropic and impulsive neutron emissions from brittle rocks under mechanical load. Meccanica, 50:1177–1188. doi: 10.1007/s11012-014-9987-9
  • Borri, A., Castori, G., Corradi, M. (2013). Masonry confinement using steel cords. Journal of Materials in Civil Engineering, 25:1910–1919. doi: 10.1061/(asce)mt.1943-5533.0000753
  • Borri, A., Castori, G., Corradi, M. (2014). Strengthening of fair face masonry columns with steel hooping. Materials and Structures, 47:2117–2130. doi: 10.1617/s11527-014-0376-6
  • BS EN 10025-1:2005. Hot rolled products of structural steels: Part 1: General technical delivery conditions. London: British Standards Institution.
  • BS EN 10025-2:2019 Hot rolled products of structural steels Technical delivery conditions for non-alloy structural steels. London: British Standards Institution.
  • BS EN 1993-1-1:2005. Eurocode 3, Design of Steel Structures: Part 1-1: General rules and rules for buildings. London: British Standards Institution.
  • Cakir, F. (2018). Structural Performance Assestment of Historical Dilovasi Sultan Suleyman (Diliskelesi) Bridge in Turkey, International Journal Of Electronics, Mechanical And Mechatronics Engineering, Vol.8 Num.3 - 2018 (1579-1588)
  • Cakir, F., Şeker, B.S. (2015). Structural performance of renovated masonry low bridge in Amasya, Turkey, Earthquakes and Structures, Vol. 8, No. 6 (2015) 1387-1406 doi: 10.12989/eas.2015.8.6.1387
  • Cancelli, A. N., Aiello, M. A. and Casadei, P. (2007). Experimental investigation on bond properties of SRP/SRG-Masonry systems. T.C. Triantafillou, ed., Proc., Fiber-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), Patras, Greece
  • Capozucca, R. (2010). Experimental FRP/SRP–historic masonry delamination. Composite Structures, 92:891–903. doi: 10.1016/j.compstruct.2009.09.029
  • Corradi, M., Di Schino, A., Borri, A., Rufini, R. (2018). A review of the use of stainless steel for masonry repair and reinforcement. Construction and Building Materials, 181:335–346. doi: 10.1016/j.conbuildmat.2018.06.034
  • Corradi, M., Granizi, A., Borri, A. (2007). Confinement of brick masonry columns with CFRP Materials. Composites Science and Technology, 67:1772–1783. doi: 10.1016/j.compscitech.2006.11.002
  • Cressman, E. R. (1962). The data of Geochemistry: Chapter T. Nondetrital Siliceous Sediments. Washington: United States Government Printing Office.
  • Flower, M. F. (1973). Evolution of basaltic and differentiated lavas from Anjouan, Comores Archipelago. Contributions to Mineralogy and Petrology, 38:237–260. doi: 10.1007/bf00374768
  • Geyve. (2022). Ali Fuat Paşa Köprüsü. http://www.geyve.gov.tr/ali-fuat-pasa-koprusu (Accessed date: 01.11.2022)
  • Geyveyoresi. (2022). https://geyveyoresi.com/alifuatpasa-koprusu-kemerleri-1923-mubadele-doneminde-muhacirler-tarafindan-barinak-olarak-kullanildi/ (01.11.2022)
  • Ghalamghash, J., Mirnejad, H., Rashid, H. (2009). Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-Sirjan Zone, NW Iran: A case study from the Alvand Pluton. Neues Jahrbuch für Mineralogie – Abhandlungen, 186:79–93. doi: 10.1127/0077-7757/2009/0133
  • Grande, E., Imbimbo, M, Sacco, E. (2011). Bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP). Materials, 4:585–600. doi: 10.3390/ma4030585
  • Halden, N. M., Bowes, D. R. (1984). Metamorphic development of cordierite-bearing layered schist and mica schist in the vicinity of Savonranta, Eastern Finland. Bulletin of the Geological Society of Finland, 56:3–23. doi: 10.17741/bgsf/56.1-2.001
  • Kesonen, A. (2015). Mechanical properties of Finnish rocks based on uniaxial compressive strength and tensile strength tests. Master’s Thesis, Degree Programme in Structural Engineering and Building Technology, School of Engineering, Aalto University.
  • Mihladiz, N. S., Sancak, E. (2015). Sakarya i̇li Ali Fuat Paşa Köprüsü (II. Bayezid Köprüsü) üzerinde Oluşan Yapısal Değişiklikler üzerine Bir Araştırma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi: 10.19113/sdufbed.00783
  • Miskovsky, K., Seiki, T. (2011). Effect of heat on the mechanical properties of selected rock types – a laboratory study. Harmonising Rock Engineering and the Environment, 815–820. doi: 10.1201/b11646-149
  • Proske, D., Gelder, P. V. (2009). Safety of Historical Stone Arch Bridges, Berlin, Germany: Springer Press. doi: 10.1007/978-3-540-77618-5
  • Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mechanics and Rock Engineering, 28:1–15. doi: 10.1007/bf01024770
  • Varro, R., Bögöly, G., Görög, P. (2021). Laboratory and numerical analysis of failure of stone masonry arches with and without reinforcement, Engineering Failure Analysis 123 (2021) 105272, doi: 10.1016/j .engfailanal.2021.105272
  • Zhang, X-P., Wong, L. N., Wang, S-J., Han, G-Y. (2011). Engineering properties of quartz mica schist. Engineering Geology, 121:135–149. doi: 10.1016/j.enggeo.2011.04.020
  • Zhu, J., Bao, W., Peng, Q., Deng, X. (2020). Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from Macro and micro views. International Journal of Rock Mechanics and Mining Sciences, 132:104350. doi: 10.1016/j.ijrmms.2020.104350.

Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye

Year 2023, , 1784 - 1798, 01.09.2023
https://doi.org/10.21597/jist.1218178

Abstract

Restoration of historical structures using new materials and techniques is widespread worldwide. In these applications, relatively new materials such as steel, concrete, reinforced concrete (RC), or composite are generally preferred. However, it is often ignored whether old materials and new materials work in compatibility. In this respect, Ali Fuat Pasha Bridge (or Bayezid II Bridge), which was built by Bayezid II in 1495 over the Sakarya River in Geyve-Sakarya, was examined. The bridge is 196.50 meters long and consists of 15 arches with different spans and three arches of the bridge were destroyed as a result of the earthquake. Then, the bridge has been restored by constructing a steel truss system in place of the destroyed arches. Within the scope of this study, the structural performance of the bridge, which is currently serving vehicle and pedestrian traffic, is examined by using finite element analyses (FEAs). Moreover, this research examines the combined behavior of steel and masonry materials and investigates the structural behavior of steel truss and masonry bridge interaction. According to the results of the analyses, there are significant behavioral differences between the masonry structure and the steel structure. The main cause for this disparity is thought to be the varying levels of stiffness and ductility in steel and masonry sections.

References

  • AFAD, (2022). Republic of Turkey Prime Ministry, Disaster and Emergency Management Presidency, Earthquake Department, https://tdth.afad.gov.tr/TDTH/main.xhtml
  • Aiello, M. A., Micelli, F., Valente, L. (2007). Structural upgrading of masonry columns by using composite reinforcements. Journal of Composites for Construction, 11:650–658. doi: 10.1061/(asce)1090-0268(2007)11:6(650)
  • ANSYS Workbench, 2022. Finite Element Software, US.
  • ASTM A36/A36M-19. Standard Specification for Carbon Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
  • ASTM A572/A572M-21. Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
  • Bertetto A. M., Grosso, B., Ricciu, R., Rizzu, D. (2014). Anisotropic and impulsive neutron emissions from brittle rocks under mechanical load. Meccanica, 50:1177–1188. doi: 10.1007/s11012-014-9987-9
  • Borri, A., Castori, G., Corradi, M. (2013). Masonry confinement using steel cords. Journal of Materials in Civil Engineering, 25:1910–1919. doi: 10.1061/(asce)mt.1943-5533.0000753
  • Borri, A., Castori, G., Corradi, M. (2014). Strengthening of fair face masonry columns with steel hooping. Materials and Structures, 47:2117–2130. doi: 10.1617/s11527-014-0376-6
  • BS EN 10025-1:2005. Hot rolled products of structural steels: Part 1: General technical delivery conditions. London: British Standards Institution.
  • BS EN 10025-2:2019 Hot rolled products of structural steels Technical delivery conditions for non-alloy structural steels. London: British Standards Institution.
  • BS EN 1993-1-1:2005. Eurocode 3, Design of Steel Structures: Part 1-1: General rules and rules for buildings. London: British Standards Institution.
  • Cakir, F. (2018). Structural Performance Assestment of Historical Dilovasi Sultan Suleyman (Diliskelesi) Bridge in Turkey, International Journal Of Electronics, Mechanical And Mechatronics Engineering, Vol.8 Num.3 - 2018 (1579-1588)
  • Cakir, F., Şeker, B.S. (2015). Structural performance of renovated masonry low bridge in Amasya, Turkey, Earthquakes and Structures, Vol. 8, No. 6 (2015) 1387-1406 doi: 10.12989/eas.2015.8.6.1387
  • Cancelli, A. N., Aiello, M. A. and Casadei, P. (2007). Experimental investigation on bond properties of SRP/SRG-Masonry systems. T.C. Triantafillou, ed., Proc., Fiber-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), Patras, Greece
  • Capozucca, R. (2010). Experimental FRP/SRP–historic masonry delamination. Composite Structures, 92:891–903. doi: 10.1016/j.compstruct.2009.09.029
  • Corradi, M., Di Schino, A., Borri, A., Rufini, R. (2018). A review of the use of stainless steel for masonry repair and reinforcement. Construction and Building Materials, 181:335–346. doi: 10.1016/j.conbuildmat.2018.06.034
  • Corradi, M., Granizi, A., Borri, A. (2007). Confinement of brick masonry columns with CFRP Materials. Composites Science and Technology, 67:1772–1783. doi: 10.1016/j.compscitech.2006.11.002
  • Cressman, E. R. (1962). The data of Geochemistry: Chapter T. Nondetrital Siliceous Sediments. Washington: United States Government Printing Office.
  • Flower, M. F. (1973). Evolution of basaltic and differentiated lavas from Anjouan, Comores Archipelago. Contributions to Mineralogy and Petrology, 38:237–260. doi: 10.1007/bf00374768
  • Geyve. (2022). Ali Fuat Paşa Köprüsü. http://www.geyve.gov.tr/ali-fuat-pasa-koprusu (Accessed date: 01.11.2022)
  • Geyveyoresi. (2022). https://geyveyoresi.com/alifuatpasa-koprusu-kemerleri-1923-mubadele-doneminde-muhacirler-tarafindan-barinak-olarak-kullanildi/ (01.11.2022)
  • Ghalamghash, J., Mirnejad, H., Rashid, H. (2009). Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-Sirjan Zone, NW Iran: A case study from the Alvand Pluton. Neues Jahrbuch für Mineralogie – Abhandlungen, 186:79–93. doi: 10.1127/0077-7757/2009/0133
  • Grande, E., Imbimbo, M, Sacco, E. (2011). Bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP). Materials, 4:585–600. doi: 10.3390/ma4030585
  • Halden, N. M., Bowes, D. R. (1984). Metamorphic development of cordierite-bearing layered schist and mica schist in the vicinity of Savonranta, Eastern Finland. Bulletin of the Geological Society of Finland, 56:3–23. doi: 10.17741/bgsf/56.1-2.001
  • Kesonen, A. (2015). Mechanical properties of Finnish rocks based on uniaxial compressive strength and tensile strength tests. Master’s Thesis, Degree Programme in Structural Engineering and Building Technology, School of Engineering, Aalto University.
  • Mihladiz, N. S., Sancak, E. (2015). Sakarya i̇li Ali Fuat Paşa Köprüsü (II. Bayezid Köprüsü) üzerinde Oluşan Yapısal Değişiklikler üzerine Bir Araştırma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi: 10.19113/sdufbed.00783
  • Miskovsky, K., Seiki, T. (2011). Effect of heat on the mechanical properties of selected rock types – a laboratory study. Harmonising Rock Engineering and the Environment, 815–820. doi: 10.1201/b11646-149
  • Proske, D., Gelder, P. V. (2009). Safety of Historical Stone Arch Bridges, Berlin, Germany: Springer Press. doi: 10.1007/978-3-540-77618-5
  • Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mechanics and Rock Engineering, 28:1–15. doi: 10.1007/bf01024770
  • Varro, R., Bögöly, G., Görög, P. (2021). Laboratory and numerical analysis of failure of stone masonry arches with and without reinforcement, Engineering Failure Analysis 123 (2021) 105272, doi: 10.1016/j .engfailanal.2021.105272
  • Zhang, X-P., Wong, L. N., Wang, S-J., Han, G-Y. (2011). Engineering properties of quartz mica schist. Engineering Geology, 121:135–149. doi: 10.1016/j.enggeo.2011.04.020
  • Zhu, J., Bao, W., Peng, Q., Deng, X. (2020). Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from Macro and micro views. International Journal of Rock Mechanics and Mining Sciences, 132:104350. doi: 10.1016/j.ijrmms.2020.104350.
There are 32 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Bora Akşar 0000-0002-3522-1351

Muhammed Alperen Ozdemir 0000-0002-3629-4341

Ali İkbal Tutar 0000-0003-2577-075X

Ferit Çakır 0000-0002-9641-2004

Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date December 12, 2022
Acceptance Date May 11, 2023
Published in Issue Year 2023

Cite

APA Akşar, B., Ozdemir, M. A., Tutar, A. İ., Çakır, F. (2023). Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Journal of the Institute of Science and Technology, 13(3), 1784-1798. https://doi.org/10.21597/jist.1218178
AMA Akşar B, Ozdemir MA, Tutar Aİ, Çakır F. Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Iğdır Üniv. Fen Bil Enst. Der. September 2023;13(3):1784-1798. doi:10.21597/jist.1218178
Chicago Akşar, Bora, Muhammed Alperen Ozdemir, Ali İkbal Tutar, and Ferit Çakır. “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1784-98. https://doi.org/10.21597/jist.1218178.
EndNote Akşar B, Ozdemir MA, Tutar Aİ, Çakır F (September 1, 2023) Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Journal of the Institute of Science and Technology 13 3 1784–1798.
IEEE B. Akşar, M. A. Ozdemir, A. İ. Tutar, and F. Çakır, “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 3, pp. 1784–1798, 2023, doi: 10.21597/jist.1218178.
ISNAD Akşar, Bora et al. “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1784-1798. https://doi.org/10.21597/jist.1218178.
JAMA Akşar B, Ozdemir MA, Tutar Aİ, Çakır F. Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1784–1798.
MLA Akşar, Bora et al. “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1784-98, doi:10.21597/jist.1218178.
Vancouver Akşar B, Ozdemir MA, Tutar Aİ, Çakır F. Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1784-98.