AFAD, (2022). Republic of Turkey Prime Ministry, Disaster and Emergency Management Presidency, Earthquake Department, https://tdth.afad.gov.tr/TDTH/main.xhtml
Aiello, M. A., Micelli, F., Valente, L. (2007). Structural upgrading of masonry columns by using composite reinforcements. Journal of Composites for Construction, 11:650–658. doi: 10.1061/(asce)1090-0268(2007)11:6(650)
ANSYS Workbench, 2022. Finite Element Software, US.
ASTM A36/A36M-19. Standard Specification for Carbon Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
ASTM A572/A572M-21. Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
Bertetto A. M., Grosso, B., Ricciu, R., Rizzu, D. (2014). Anisotropic and impulsive neutron emissions from brittle rocks under mechanical load. Meccanica, 50:1177–1188. doi: 10.1007/s11012-014-9987-9
Borri, A., Castori, G., Corradi, M. (2013). Masonry confinement using steel cords. Journal of Materials in Civil Engineering, 25:1910–1919. doi: 10.1061/(asce)mt.1943-5533.0000753
Borri, A., Castori, G., Corradi, M. (2014). Strengthening of fair face masonry columns with steel hooping. Materials and Structures, 47:2117–2130. doi: 10.1617/s11527-014-0376-6
BS EN 10025-1:2005. Hot rolled products of structural steels: Part 1: General technical delivery conditions. London: British Standards Institution.
BS EN 10025-2:2019 Hot rolled products of structural steels Technical delivery conditions for non-alloy structural steels. London: British Standards Institution.
BS EN 1993-1-1:2005. Eurocode 3, Design of Steel Structures: Part 1-1: General rules and rules for buildings. London: British Standards Institution.
Cakir, F. (2018). Structural Performance Assestment of Historical Dilovasi Sultan Suleyman (Diliskelesi) Bridge in Turkey, International Journal Of Electronics, Mechanical And Mechatronics Engineering, Vol.8 Num.3 - 2018 (1579-1588)
Cakir, F., Şeker, B.S. (2015). Structural performance of renovated masonry low bridge in Amasya, Turkey, Earthquakes and Structures, Vol. 8, No. 6 (2015) 1387-1406 doi: 10.12989/eas.2015.8.6.1387
Cancelli, A. N., Aiello, M. A. and Casadei, P. (2007). Experimental investigation on bond properties of SRP/SRG-Masonry systems. T.C. Triantafillou, ed., Proc., Fiber-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), Patras, Greece
Corradi, M., Di Schino, A., Borri, A., Rufini, R. (2018). A review of the use of stainless steel for masonry repair and reinforcement. Construction and Building Materials, 181:335–346. doi: 10.1016/j.conbuildmat.2018.06.034
Corradi, M., Granizi, A., Borri, A. (2007). Confinement of brick masonry columns with CFRP Materials. Composites Science and Technology, 67:1772–1783. doi: 10.1016/j.compscitech.2006.11.002
Cressman, E. R. (1962). The data of Geochemistry: Chapter T. Nondetrital Siliceous Sediments. Washington: United States Government Printing Office.
Flower, M. F. (1973). Evolution of basaltic and differentiated lavas from Anjouan, Comores Archipelago. Contributions to Mineralogy and Petrology, 38:237–260. doi: 10.1007/bf00374768
Geyve. (2022). Ali Fuat Paşa Köprüsü. http://www.geyve.gov.tr/ali-fuat-pasa-koprusu (Accessed date: 01.11.2022)
Ghalamghash, J., Mirnejad, H., Rashid, H. (2009). Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-Sirjan Zone, NW Iran: A case study from the Alvand Pluton. Neues Jahrbuch für Mineralogie – Abhandlungen, 186:79–93. doi: 10.1127/0077-7757/2009/0133
Grande, E., Imbimbo, M, Sacco, E. (2011). Bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP). Materials, 4:585–600. doi: 10.3390/ma4030585
Halden, N. M., Bowes, D. R. (1984). Metamorphic development of cordierite-bearing layered schist and mica schist in the vicinity of Savonranta, Eastern Finland. Bulletin of the Geological Society of Finland, 56:3–23. doi: 10.17741/bgsf/56.1-2.001
Kesonen, A. (2015). Mechanical properties of Finnish rocks based on uniaxial compressive strength and tensile strength tests. Master’s Thesis, Degree Programme in Structural Engineering and Building Technology, School of Engineering, Aalto University.
Mihladiz, N. S., Sancak, E. (2015). Sakarya i̇li Ali Fuat Paşa Köprüsü (II. Bayezid Köprüsü) üzerinde Oluşan Yapısal Değişiklikler üzerine Bir Araştırma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi: 10.19113/sdufbed.00783
Miskovsky, K., Seiki, T. (2011). Effect of heat on the mechanical properties of selected rock types – a laboratory study. Harmonising Rock Engineering and the Environment, 815–820. doi: 10.1201/b11646-149
Proske, D., Gelder, P. V. (2009). Safety of Historical Stone Arch Bridges, Berlin, Germany: Springer Press. doi: 10.1007/978-3-540-77618-5
Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mechanics and Rock Engineering, 28:1–15. doi: 10.1007/bf01024770
Varro, R., Bögöly, G., Görög, P. (2021). Laboratory and numerical analysis of failure of stone masonry arches with and without reinforcement, Engineering Failure Analysis 123 (2021) 105272, doi: 10.1016/j .engfailanal.2021.105272
Zhu, J., Bao, W., Peng, Q., Deng, X. (2020). Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from Macro and micro views. International Journal of Rock Mechanics and Mining Sciences, 132:104350. doi: 10.1016/j.ijrmms.2020.104350.
Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye
Restoration of historical structures using new materials and techniques is widespread worldwide. In these applications, relatively new materials such as steel, concrete, reinforced concrete (RC), or composite are generally preferred. However, it is often ignored whether old materials and new materials work in compatibility. In this respect, Ali Fuat Pasha Bridge (or Bayezid II Bridge), which was built by Bayezid II in 1495 over the Sakarya River in Geyve-Sakarya, was examined. The bridge is 196.50 meters long and consists of 15 arches with different spans and three arches of the bridge were destroyed as a result of the earthquake. Then, the bridge has been restored by constructing a steel truss system in place of the destroyed arches. Within the scope of this study, the structural performance of the bridge, which is currently serving vehicle and pedestrian traffic, is examined by using finite element analyses (FEAs). Moreover, this research examines the combined behavior of steel and masonry materials and investigates the structural behavior of steel truss and masonry bridge interaction. According to the results of the analyses, there are significant behavioral differences between the masonry structure and the steel structure. The main cause for this disparity is thought to be the varying levels of stiffness and ductility in steel and masonry sections.
AFAD, (2022). Republic of Turkey Prime Ministry, Disaster and Emergency Management Presidency, Earthquake Department, https://tdth.afad.gov.tr/TDTH/main.xhtml
Aiello, M. A., Micelli, F., Valente, L. (2007). Structural upgrading of masonry columns by using composite reinforcements. Journal of Composites for Construction, 11:650–658. doi: 10.1061/(asce)1090-0268(2007)11:6(650)
ANSYS Workbench, 2022. Finite Element Software, US.
ASTM A36/A36M-19. Standard Specification for Carbon Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
ASTM A572/A572M-21. Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA: ASTM International.
Bertetto A. M., Grosso, B., Ricciu, R., Rizzu, D. (2014). Anisotropic and impulsive neutron emissions from brittle rocks under mechanical load. Meccanica, 50:1177–1188. doi: 10.1007/s11012-014-9987-9
Borri, A., Castori, G., Corradi, M. (2013). Masonry confinement using steel cords. Journal of Materials in Civil Engineering, 25:1910–1919. doi: 10.1061/(asce)mt.1943-5533.0000753
Borri, A., Castori, G., Corradi, M. (2014). Strengthening of fair face masonry columns with steel hooping. Materials and Structures, 47:2117–2130. doi: 10.1617/s11527-014-0376-6
BS EN 10025-1:2005. Hot rolled products of structural steels: Part 1: General technical delivery conditions. London: British Standards Institution.
BS EN 10025-2:2019 Hot rolled products of structural steels Technical delivery conditions for non-alloy structural steels. London: British Standards Institution.
BS EN 1993-1-1:2005. Eurocode 3, Design of Steel Structures: Part 1-1: General rules and rules for buildings. London: British Standards Institution.
Cakir, F. (2018). Structural Performance Assestment of Historical Dilovasi Sultan Suleyman (Diliskelesi) Bridge in Turkey, International Journal Of Electronics, Mechanical And Mechatronics Engineering, Vol.8 Num.3 - 2018 (1579-1588)
Cakir, F., Şeker, B.S. (2015). Structural performance of renovated masonry low bridge in Amasya, Turkey, Earthquakes and Structures, Vol. 8, No. 6 (2015) 1387-1406 doi: 10.12989/eas.2015.8.6.1387
Cancelli, A. N., Aiello, M. A. and Casadei, P. (2007). Experimental investigation on bond properties of SRP/SRG-Masonry systems. T.C. Triantafillou, ed., Proc., Fiber-Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-8), Patras, Greece
Corradi, M., Di Schino, A., Borri, A., Rufini, R. (2018). A review of the use of stainless steel for masonry repair and reinforcement. Construction and Building Materials, 181:335–346. doi: 10.1016/j.conbuildmat.2018.06.034
Corradi, M., Granizi, A., Borri, A. (2007). Confinement of brick masonry columns with CFRP Materials. Composites Science and Technology, 67:1772–1783. doi: 10.1016/j.compscitech.2006.11.002
Cressman, E. R. (1962). The data of Geochemistry: Chapter T. Nondetrital Siliceous Sediments. Washington: United States Government Printing Office.
Flower, M. F. (1973). Evolution of basaltic and differentiated lavas from Anjouan, Comores Archipelago. Contributions to Mineralogy and Petrology, 38:237–260. doi: 10.1007/bf00374768
Geyve. (2022). Ali Fuat Paşa Köprüsü. http://www.geyve.gov.tr/ali-fuat-pasa-koprusu (Accessed date: 01.11.2022)
Ghalamghash, J., Mirnejad, H., Rashid, H. (2009). Mixing and mingling of mafic and felsic magmas along the Neo-Tethys continental margin, Sanandaj-Sirjan Zone, NW Iran: A case study from the Alvand Pluton. Neues Jahrbuch für Mineralogie – Abhandlungen, 186:79–93. doi: 10.1127/0077-7757/2009/0133
Grande, E., Imbimbo, M, Sacco, E. (2011). Bond behavior of historical clay bricks strengthened with steel reinforced polymers (SRP). Materials, 4:585–600. doi: 10.3390/ma4030585
Halden, N. M., Bowes, D. R. (1984). Metamorphic development of cordierite-bearing layered schist and mica schist in the vicinity of Savonranta, Eastern Finland. Bulletin of the Geological Society of Finland, 56:3–23. doi: 10.17741/bgsf/56.1-2.001
Kesonen, A. (2015). Mechanical properties of Finnish rocks based on uniaxial compressive strength and tensile strength tests. Master’s Thesis, Degree Programme in Structural Engineering and Building Technology, School of Engineering, Aalto University.
Mihladiz, N. S., Sancak, E. (2015). Sakarya i̇li Ali Fuat Paşa Köprüsü (II. Bayezid Köprüsü) üzerinde Oluşan Yapısal Değişiklikler üzerine Bir Araştırma. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, doi: 10.19113/sdufbed.00783
Miskovsky, K., Seiki, T. (2011). Effect of heat on the mechanical properties of selected rock types – a laboratory study. Harmonising Rock Engineering and the Environment, 815–820. doi: 10.1201/b11646-149
Proske, D., Gelder, P. V. (2009). Safety of Historical Stone Arch Bridges, Berlin, Germany: Springer Press. doi: 10.1007/978-3-540-77618-5
Schultz, R. A. (1995). Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mechanics and Rock Engineering, 28:1–15. doi: 10.1007/bf01024770
Varro, R., Bögöly, G., Görög, P. (2021). Laboratory and numerical analysis of failure of stone masonry arches with and without reinforcement, Engineering Failure Analysis 123 (2021) 105272, doi: 10.1016/j .engfailanal.2021.105272
Zhu, J., Bao, W., Peng, Q., Deng, X. (2020). Influence of substrate properties and interfacial roughness on static and dynamic tensile behaviour of rock-shotcrete interface from Macro and micro views. International Journal of Rock Mechanics and Mining Sciences, 132:104350. doi: 10.1016/j.ijrmms.2020.104350.
Akşar, B., Ozdemir, M. A., Tutar, A. İ., Çakır, F. (2023). Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Journal of the Institute of Science and Technology, 13(3), 1784-1798. https://doi.org/10.21597/jist.1218178
AMA
Akşar B, Ozdemir MA, Tutar Aİ, Çakır F. Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Iğdır Üniv. Fen Bil Enst. Der. September 2023;13(3):1784-1798. doi:10.21597/jist.1218178
Chicago
Akşar, Bora, Muhammed Alperen Ozdemir, Ali İkbal Tutar, and Ferit Çakır. “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1784-98. https://doi.org/10.21597/jist.1218178.
EndNote
Akşar B, Ozdemir MA, Tutar Aİ, Çakır F (September 1, 2023) Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Journal of the Institute of Science and Technology 13 3 1784–1798.
IEEE
B. Akşar, M. A. Ozdemir, A. İ. Tutar, and F. Çakır, “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 3, pp. 1784–1798, 2023, doi: 10.21597/jist.1218178.
ISNAD
Akşar, Bora et al. “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1784-1798. https://doi.org/10.21597/jist.1218178.
JAMA
Akşar B, Ozdemir MA, Tutar Aİ, Çakır F. Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1784–1798.
MLA
Akşar, Bora et al. “Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1784-98, doi:10.21597/jist.1218178.
Vancouver
Akşar B, Ozdemir MA, Tutar Aİ, Çakır F. Structural Analysis of Steel Truss and Masonry Bridge Interaction: A Case of Ali Fuat Pasha Bridge in Sakarya, Türkiye. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1784-98.