Quantum Transport Properties of InAs NWFET with Surface Traps
Year 2023,
, 1653 - 1662, 01.09.2023
Semran Ipek
,
İbrahim Genç
Abstract
The quantum transport properties of InAs nanowire field effect transistor (NWFET) have been calculated and analyzed depending on the surface trap concentrations. Surface traps can be either impurity atoms, dangling bonds or structural deformations. Here, we have left some In and As atoms unsaturated to obtain surface traps. Our calculations show that the on-state voltage increases as the surface trap concentration increases. Within an equivalent circuit model, we have found that the effective field mobility is as low as 250 cm2/V.s following with small transconductance value of 2.4 nS for our simulated device. This shows that surface traps significantly effect the benchmarking properties of InAs NWFET.
Supporting Institution
TÜBİTAK
Thanks
This work was partly supported by Scientific and Technological Research Council of Turkiye (TÜBİTAK) under Project No. 121E207.
Authors would like to thank Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM) for its partly support to the project.
Authors would also like to thank Süleyman Emre Önsay for his efforts in computer analyses.
References
- Bryllert, T., Samuelson, L., Jensen, L. E., & Wernersson, L. (2005). Vertical high mobility wrap-gated InAs nanowire transistor. 63rd Device Research Conference Digest, 2005. DRC ’05., 1, 157–158. https://doi.org/10.1109/DRC.2005.1553100
- Chuang, S., Gao, Q., Kapadia, R., Ford, A. C., Guo, J., & Javey, A. (2013). Ballistic InAs Nanowire Transistors. Nano Letters, 13(2), 555–558. https://doi.org/10.1021/nl3040674
- Clément, N., Nishiguchi, K., Fujiwara, A., & Vuillaume, D. (2010). One-by-one trap activation in silicon nanowire transistors. Nature Communications, 1(1), 92. https://doi.org/10.1038/ncomms1092
- Cui, Y., Zhong, Z., Wang, D., Wang, W. U., & Lieber, C. M. (2003). High Performance Silicon Nanowire Field Effect Transistors. Nano Letters, 3(2), 149–152. https://doi.org/10.1021/nl025875l
- Dayeh, S. A., Aplin, D. P. R., Zhou, X., Yu, P. K. L., Yu, E. T., & Wang, D. (2007). High Electron Mobility InAs Nanowire Field-Effect Transistors. Small, 3(2), 326–332. https://doi.org/https://doi.org/10.1002/smll.200600379
- del Alamo, J. A. (2011). Nanometre-scale electronics with III–V compound semiconductors. Nature, 479(7373), 317–323. https://doi.org/10.1038/nature10677
- Hasegawa, S. (2000). Surface-state bands on silicon as electron systems in reduced dimensions at atomic scales. Journal of Physics: Condensed Matter, 12, R463. https://doi.org/10.1088/0953-8984/12/35/201
- Huang, Y., Duan, X., Cui, Y., & Lieber, C. M. (2002). Gallium Nitride Nanowire Nanodevices. Nano Letters, 2(2), 101–104. https://doi.org/10.1021/nl015667d
- José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón, & Daniel Sánchez-Portal. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745. https://doi.org/10.1088/0953-8984/14/11/302
- Lee, S. H., Shin, S.-H., Madsen, M., Takei, K., Nah, J., & Lee, M. H. (2018). A soft lithographic approach to fabricate InAs nanowire field-effect transistors. Scientific Reports, 8(1), 3204. https://doi.org/10.1038/s41598-018-21420-y
- Lynall, D., Nair, S. v, Gutstein, D., Shik, A., Savelyev, I. G., Blumin, M., & Ruda, H. E. (2018). Surface State Dynamics Dictating Transport in InAs Nanowires. Nano Letters, 18(2), 1387–1395. https://doi.org/10.1021/acs.nanolett.7b05106
- Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M., & Kouwenhoven, L. P. (2010). Spin–orbit qubit in a semiconductor nanowire. Nature, 468(7327), 1084–1087. https://doi.org/10.1038/nature09682
- Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
- Schubert, E. (1993). Doping in III-V Semiconductors (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511599828
- Supriyo Datta. (1997). Electronic Transport in Mesoscopic Systems (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Series Number 3.
- Troullier, N., & Martins, J. (1990). A straightforward method for generating soft transferable pseudopotentials. Solid State Communications, 74(7), 613–616. https://doi.org/https://doi.org/10.1016/0038-1098(90)90686-6
- Tseng, A. C., Lynall, D., Savelyev, I., Blumin, M., Wang, S., & Ruda, H. E. (2017). Sensing Responses Based on Transfer Characteristics of InAs Nanowire Field-Effect Transistors. Sensors, 17(7). https://doi.org/10.3390/s17071640
- Yeu, I. W., Han, G., Park, J., Hwang, C. S., & Choi, J.-H. (2019). Equilibrium crystal shape of GaAs and InAs considering surface vibration and new (111)B reconstruction: ab-initio thermodynamics. Scientific Reports, 9(1), 1127. https://doi.org/10.1038/s41598-018-37910-y
- Zhu, H. (2017). Semiconductor Nanowire MOSFETs and Applications. In Nanowires - New Insights. InTech. https://doi.org/10.5772/67446
Year 2023,
, 1653 - 1662, 01.09.2023
Semran Ipek
,
İbrahim Genç
References
- Bryllert, T., Samuelson, L., Jensen, L. E., & Wernersson, L. (2005). Vertical high mobility wrap-gated InAs nanowire transistor. 63rd Device Research Conference Digest, 2005. DRC ’05., 1, 157–158. https://doi.org/10.1109/DRC.2005.1553100
- Chuang, S., Gao, Q., Kapadia, R., Ford, A. C., Guo, J., & Javey, A. (2013). Ballistic InAs Nanowire Transistors. Nano Letters, 13(2), 555–558. https://doi.org/10.1021/nl3040674
- Clément, N., Nishiguchi, K., Fujiwara, A., & Vuillaume, D. (2010). One-by-one trap activation in silicon nanowire transistors. Nature Communications, 1(1), 92. https://doi.org/10.1038/ncomms1092
- Cui, Y., Zhong, Z., Wang, D., Wang, W. U., & Lieber, C. M. (2003). High Performance Silicon Nanowire Field Effect Transistors. Nano Letters, 3(2), 149–152. https://doi.org/10.1021/nl025875l
- Dayeh, S. A., Aplin, D. P. R., Zhou, X., Yu, P. K. L., Yu, E. T., & Wang, D. (2007). High Electron Mobility InAs Nanowire Field-Effect Transistors. Small, 3(2), 326–332. https://doi.org/https://doi.org/10.1002/smll.200600379
- del Alamo, J. A. (2011). Nanometre-scale electronics with III–V compound semiconductors. Nature, 479(7373), 317–323. https://doi.org/10.1038/nature10677
- Hasegawa, S. (2000). Surface-state bands on silicon as electron systems in reduced dimensions at atomic scales. Journal of Physics: Condensed Matter, 12, R463. https://doi.org/10.1088/0953-8984/12/35/201
- Huang, Y., Duan, X., Cui, Y., & Lieber, C. M. (2002). Gallium Nitride Nanowire Nanodevices. Nano Letters, 2(2), 101–104. https://doi.org/10.1021/nl015667d
- José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón, & Daniel Sánchez-Portal. (2002). The SIESTA method for ab initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11), 2745. https://doi.org/10.1088/0953-8984/14/11/302
- Lee, S. H., Shin, S.-H., Madsen, M., Takei, K., Nah, J., & Lee, M. H. (2018). A soft lithographic approach to fabricate InAs nanowire field-effect transistors. Scientific Reports, 8(1), 3204. https://doi.org/10.1038/s41598-018-21420-y
- Lynall, D., Nair, S. v, Gutstein, D., Shik, A., Savelyev, I. G., Blumin, M., & Ruda, H. E. (2018). Surface State Dynamics Dictating Transport in InAs Nanowires. Nano Letters, 18(2), 1387–1395. https://doi.org/10.1021/acs.nanolett.7b05106
- Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M., & Kouwenhoven, L. P. (2010). Spin–orbit qubit in a semiconductor nanowire. Nature, 468(7327), 1084–1087. https://doi.org/10.1038/nature09682
- Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
- Schubert, E. (1993). Doping in III-V Semiconductors (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511599828
- Supriyo Datta. (1997). Electronic Transport in Mesoscopic Systems (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Series Number 3.
- Troullier, N., & Martins, J. (1990). A straightforward method for generating soft transferable pseudopotentials. Solid State Communications, 74(7), 613–616. https://doi.org/https://doi.org/10.1016/0038-1098(90)90686-6
- Tseng, A. C., Lynall, D., Savelyev, I., Blumin, M., Wang, S., & Ruda, H. E. (2017). Sensing Responses Based on Transfer Characteristics of InAs Nanowire Field-Effect Transistors. Sensors, 17(7). https://doi.org/10.3390/s17071640
- Yeu, I. W., Han, G., Park, J., Hwang, C. S., & Choi, J.-H. (2019). Equilibrium crystal shape of GaAs and InAs considering surface vibration and new (111)B reconstruction: ab-initio thermodynamics. Scientific Reports, 9(1), 1127. https://doi.org/10.1038/s41598-018-37910-y
- Zhu, H. (2017). Semiconductor Nanowire MOSFETs and Applications. In Nanowires - New Insights. InTech. https://doi.org/10.5772/67446