Research Article
BibTex RIS Cite
Year 2023, , 1902 - 1915, 01.09.2023
https://doi.org/10.21597/jist.1243905

Abstract

References

  • Abutaleb, A., Imran, M., Zouli, N., Khan, A. H., Hussain, S., Ali, M. A., Zahmatkesh, S. (2023). Fe3O4-multiwalled carbon nanotubes-bentonite as adsorbent for removal of methylene blue from aqueous solutions. Chemosphere, 316(January), 137824. https://doi.org/10.1016/j.chemosphere.2023.137824
  • Anirudhan, T. S., Mohan, M., & Rajeev, M. R. (2022). Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int. J. Biol. Macromol., 201, 378–388. https://doi.org/10.1016/j.ijbiomac.2022.01.022
  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/3039817
  • Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., & Belver, C. (2020). Review on Activated Carbons by Chemical Activation with FeCl3. C — Journal of Carbon Research, 6(2), 21. https://doi.org/10.3390/c6020021
  • Bulut, E., Özacar, M., Şengil, İ.A. (2008a). Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous Mesoporous Mater., 115, 3, 234-246. https://doi.org/10.1016/j.micromeso.2008.01.039
  • Bulut, E., Özacar, M., Şengil, İ.A. (2008b). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater., 154, 1–3, 613-622. https://doi.org/10.1016/j.jhazmat.2007.10.071
  • Chowdhury, A., Kumari, S., Khan, A. A., & Hussain, S. (2020). Selective removal of anionic dyes with exceptionally high adsorption capacity and removal of dichromate (Cr2O72-) anion using Ni-Co-S/CTAB nanocomposites and its adsorption mechanism. J. Hazard. Mater., 385(September 2019), 121602. https://doi.org/10.1016/j.jhazmat.2019.121602
  • Dutournié, P., Bruneau, M., Brendlé, J., Limousy, L., Pluchon, S. (2019). Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest. Comptes Rendus Chimie, 22, 2–3, 250-257. https://doi.org/10.1016/j.crci.2018.10.008
  • Elabboudi, M., Bensalah, J., El-Amri, A., El-Azzouzi, N., Srhir, B., Lebkiri, A., Zarrouk, A., Rifi, E.H. (2023). Adsorption performance and mechanism of anionic MO dye by the adsorbent polymeric Amberlite®IRA-410 resin from environment wastewater: Equilibrium kinetic and thermodynamic studies. J. Mol. Struct., 1277, 134789. https://doi.org/10.1016/j.molstruc.2022.134789
  • Glaas-WHO. (2022). Strong systems and sound investments: evidence on and key insights into accelerating progress on sanitation, drinking-water and hygiene. The UN-Water global analysis and assessment of sanitation and drinking-water (GLAAS) 2022 report, Licence CC BY-NC-SA 3.0 IGO.
  • Güngör, Z., & Ozay, H. (2022a). Ultra-fast pH determination with a new colorimetric pH-sensing hydrogel for biomedical and environmental applications. Reactive and Functional Polymers, 180(September). https://doi.org/10.1016/j.reactfunctpolym.2022.105398
  • Güngör, Z., & Ozay, H. (2022b). Use of cationic p[2-(acryloyloxy)ethyl] trimethylammonium chloride in hydrogel synthesis and adsorption of methyl orange with jeffamine based crosslinker. J. Dispers Sci. Technol., 0(0), 1–16. https://doi.org/10.1080/01932691.2022.2129676 Hambisa, A.A., Regasa, M.B., Ejigu, H.G., Senbeto C.B. (2023). Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Appl Water Sci 13, 24. https://doi.org/10.1007/s13201-022-01832-y
  • Ilgin, P., Onder, A., Kıvanç, M. R., Ozay, H., & Ozay, O. (2023). Adsorption of methylene blue from aqueous solution using poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-2-hydroxyethyl methacrylate) hydrogel crosslinked by activated carbon. J. Macromol. Sci. A, 60, 135–144. https://doi.org/10.1080/10601325.2023.2165945
  • Iwuozor, K.O, Ighalo, J.O., Emenike, E.C., Ogunfowora, L.A., Igwegbe, C.A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Curr. Opin. Green Sustain. Chem., 4, 100179. https://doi.org/10.1016/j.crgsc.2021.100179
  • Jiang, Y., Liu, B., Xu, J., Pan, K., Hou, H., Hu, J., & Yang, J. (2018). Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydrate Polymers, 182(July 2017), 106–114. https://doi.org/10.1016/j.carbpol.2017.10.097
  • Kim, S. H., Kim, D. S., Moradi, H., Chang, Y. Y., & Yang, J. K. (2023). Highly porous biobased graphene-like carbon adsorbent for dye removal: Preparation, adsorption mechanisms and optimization. J. Environ. Chem. Eng., 11(2), 109278. https://doi.org/10.1016/j.jece.2023.109278
  • Liu, H., Wang, K., Zhang, D., Zhao, D., Zhai, J., Cui, W. (2023). Adsorption and catalytic removal of methyl orange from water by PIL-GO/TiO2/Fe3O4 composites. Mater Sci Semicond Process. 154, 107215. https://doi.org/10.1016/j.mssp.2022.107215
  • Liu, Y., Liu, X., Dong, W., Zhang, L., Kong, Q., & Wang, W. (2017). Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-12805-6
  • Omorogie, M. O., Agbadaola, M. T., Olatunde, A. M., Helmreich, B., & Babalola, J. O. (2022). Surface equilibrium and dynamics for the adsorption of anionic dyes onto MnO2/biomass micro-composite. Green Chemistry Letters and Reviews, 15(1), 49–58. https://doi.org/10.1080/17518253.2021.2018508
  • Onder, A. & Ozay, H. (2021). Highly efficient removal of methyl orange from aqueous media by amine functional cyclotriphosphazene submicrospheres as reusable column packing material. Chem. Eng. Process.: Process Intensif., 165, 108427. https://doi.org/10.1016/J.CEP.2021.108427
  • Onder, A., Ilgin, P., Ozay, H., & Ozay, O. (2020). Removal of dye from aqueous medium with pH-sensitive poly[(2-(acryloyloxy)ethyl]trimethylammonium chloride-co-1-vinyl-2-pyrrolidone] cationic hydrogel. J. Environ. Chem. Eng., 8(5), 104436. https://doi.org/10.1016/j.jece.2020.104436
  • Onder, A., Ilgin, P., Ozay, H., & Ozay, O. (2022). Preparation of composite hydrogels containing fly ash as low-cost adsorbent material and its use in dye adsorption. Int. J. Environ. Sci. Technol., 19, 7031–7048. https://doi.org/10.1007/s13762-021-03622-6
  • Onder, A., Kıvanç, M. R., Ilgin, P., Ozay, H., & Ozay, O. (2023). Synthesis of p(HEMA-co-AETAC) nanocomposite hydrogel with vinyl-function montmorillonite nanoparticles and effective removal of methyl orange from aqueous solution. J. Macromol. Sci. A, 60(2), 108–123. https://doi.org/10.1080/10601325.2023.2169155
  • Ozsoy, F., Ozdilek, B., Onder, A., Ilgin, P., Ozay, H., & Ozay, O. (2022). Graphene nanoplate incorporated Gelatin/poly(2-(Acryloyloxy)ethyl trimethylammonium chloride) composites hydrogel for highly effective removal of Alizarin Red S from aqueous solution. Journal of Polymer Research, 29(11). https://doi.org/10.1007/s10965-022-03327-5
  • Roa, K., Tapiero, Y., Thotiyl, M. O., & Sánchez, J. (2021). Hydrogels based on poly([2-(acryloxy)ethyl] trimethylammonium chloride) and nanocellulose applied to remove methyl orange dye from water. Polymers, 13(14). https://doi.org/10.3390/polym13142265
  • Rong, N., Chen, C., Ouyang, K., Zhang, K., Wang, X., & Xu, Z. (2021). Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep. Purif. Technol., 274, 119120. https://doi.org/10.1016/j.seppur.2021.119120
  • Saafie, N., Samsudin, M. F. R., Sufian, S., & Ramli, R. M. (2019). Enhancement of the activated carbon over methylene blue removal efficiency via alkali-acid treatment. AIP Conference Proceedings, 2124(July). https://doi.org/10.1063/1.5117106
  • Sharma, S., Kaur, M., Sharma, C., Choudhary, A. and Paul, S. (2021). Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan–Lam Coupling and Oxidations. ACS Omega, 6, 30, 19529–19545. https://doi.org/10.1021/acsomega.1c01830
  • Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., & Zhang, S. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 7(24), 14395–14405. https://doi.org/10.1039/c7ra00287d
  • Singh, A., Kar, A. K., Singh, D., Verma, R., Shraogi, N., Zehra, A. et al. (2022). pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of Imidacloprid towards sustainable pest control. J. Chem. Eng, 427, 131215. https://doi.org/10.1016/j.cej.2021.131215
  • Sugawara, A., Asoh, T. A., Takashima, Y., Harada, A., & Uyama, H. (2020). Composite hydrogels reinforced by cellulose-based supramolecular filler. Polym. Degrad. Stab., 177, 109157. https://doi.org/10.1016/j.polymdegradstab.2020.109157
  • Tian, H., Guo, Q., & Xu, D. (2010). Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. Journal of Power Sources, 195(8), 2136–2142. https://doi.org/10.1016/J.JPOWSOUR.2009.10.006
  • Wang, L., Zhang, X., Xu, J., Wang, Q., & Fan, X. (2020). Synthesis of partly debranched starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride) catalyzed by horseradish peroxidase and the effect on adhesion to polyester/cotton yarn. Process Biochemistry, 97(March), 176–182. https://doi.org/10.1016/j.procbio.2020.07.015
  • Wu, L., Liu, X., Lv, G. et al. (2021). Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci Rep 11, 10640. https://doi.org/10.1038/s41598-021-90235-1
  • Xu, H., Zhang, Y., Cheng, Y., Tian, W., Zhao, Z., & Tang, J. (2019). Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution. Adsorp Sci Technol, 37(3–4), 217–235. https://doi.org/10.1177/0263617418822917
  • Zhang, L., Tu, L. Y., Liang, Y., Chen, Q., Li, Z. S., Li, C. H., … Li, W. (2018). Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Advances, 8(74), 42280–42291. https://doi.org/10.1039/c8ra08990f

Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye

Year 2023, , 1902 - 1915, 01.09.2023
https://doi.org/10.21597/jist.1243905

Abstract

Water-insoluble p(AETAC)/AC composite hydrogels containing quaternary ammonium were prepared by free-radical polymerisation method with [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) and activated carbon (AC). The composite hydrogel was characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) methods. In addition, the swelling behavior of p(AETAC)/AC composite hydrogels containing 50 mg, 75 mg, 100 mg, and 150 mg AC in deionized water was investigated. The swelling capacity of the p(AETAC)/AC75 composite hydrogel containing 75 mg AC in various waters was determined. Initial dye concentration, contact time, pH of dye solution, amount of adsorbent, and temperature parameters affecting MO adsorption of p(AETAC)/AC75 composite hydrogel were investigated. The obtained adsorption data agree with the Langmuir isotherm model and the PFO kinetic model. It was determined that the maximum adsorption ability of p(AETAC)/AC75 composite hydrogel according to Langmuir isotherm was 909.09 mg/g. ΔH° and ΔS° values for the adsorption of MO dye-stuff of p(AETAC)/AC75 composite hydrogel were calculated as 22.25 ± 1.43 and 85.40 ± 4.60, respectively. In addition, the value of ΔG° less than zero at four different temperatures indicates that the dye adsorption is spontaneous. According to all the data obtained, p(AETAC)/AC75 composite hydrogel can be considered a promising candidate for the removal of anionic dyestuffs from water.

References

  • Abutaleb, A., Imran, M., Zouli, N., Khan, A. H., Hussain, S., Ali, M. A., Zahmatkesh, S. (2023). Fe3O4-multiwalled carbon nanotubes-bentonite as adsorbent for removal of methylene blue from aqueous solutions. Chemosphere, 316(January), 137824. https://doi.org/10.1016/j.chemosphere.2023.137824
  • Anirudhan, T. S., Mohan, M., & Rajeev, M. R. (2022). Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int. J. Biol. Macromol., 201, 378–388. https://doi.org/10.1016/j.ijbiomac.2022.01.022
  • Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and Interpretation of Adsorption Isotherms. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/3039817
  • Bedia, J., Peñas-Garzón, M., Gómez-Avilés, A., Rodriguez, J. J., & Belver, C. (2020). Review on Activated Carbons by Chemical Activation with FeCl3. C — Journal of Carbon Research, 6(2), 21. https://doi.org/10.3390/c6020021
  • Bulut, E., Özacar, M., Şengil, İ.A. (2008a). Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous Mesoporous Mater., 115, 3, 234-246. https://doi.org/10.1016/j.micromeso.2008.01.039
  • Bulut, E., Özacar, M., Şengil, İ.A. (2008b). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater., 154, 1–3, 613-622. https://doi.org/10.1016/j.jhazmat.2007.10.071
  • Chowdhury, A., Kumari, S., Khan, A. A., & Hussain, S. (2020). Selective removal of anionic dyes with exceptionally high adsorption capacity and removal of dichromate (Cr2O72-) anion using Ni-Co-S/CTAB nanocomposites and its adsorption mechanism. J. Hazard. Mater., 385(September 2019), 121602. https://doi.org/10.1016/j.jhazmat.2019.121602
  • Dutournié, P., Bruneau, M., Brendlé, J., Limousy, L., Pluchon, S. (2019). Mass transfer modelling in clay-based material: Estimation of apparent diffusivity of a molecule of interest. Comptes Rendus Chimie, 22, 2–3, 250-257. https://doi.org/10.1016/j.crci.2018.10.008
  • Elabboudi, M., Bensalah, J., El-Amri, A., El-Azzouzi, N., Srhir, B., Lebkiri, A., Zarrouk, A., Rifi, E.H. (2023). Adsorption performance and mechanism of anionic MO dye by the adsorbent polymeric Amberlite®IRA-410 resin from environment wastewater: Equilibrium kinetic and thermodynamic studies. J. Mol. Struct., 1277, 134789. https://doi.org/10.1016/j.molstruc.2022.134789
  • Glaas-WHO. (2022). Strong systems and sound investments: evidence on and key insights into accelerating progress on sanitation, drinking-water and hygiene. The UN-Water global analysis and assessment of sanitation and drinking-water (GLAAS) 2022 report, Licence CC BY-NC-SA 3.0 IGO.
  • Güngör, Z., & Ozay, H. (2022a). Ultra-fast pH determination with a new colorimetric pH-sensing hydrogel for biomedical and environmental applications. Reactive and Functional Polymers, 180(September). https://doi.org/10.1016/j.reactfunctpolym.2022.105398
  • Güngör, Z., & Ozay, H. (2022b). Use of cationic p[2-(acryloyloxy)ethyl] trimethylammonium chloride in hydrogel synthesis and adsorption of methyl orange with jeffamine based crosslinker. J. Dispers Sci. Technol., 0(0), 1–16. https://doi.org/10.1080/01932691.2022.2129676 Hambisa, A.A., Regasa, M.B., Ejigu, H.G., Senbeto C.B. (2023). Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Appl Water Sci 13, 24. https://doi.org/10.1007/s13201-022-01832-y
  • Ilgin, P., Onder, A., Kıvanç, M. R., Ozay, H., & Ozay, O. (2023). Adsorption of methylene blue from aqueous solution using poly(2-acrylamido-2-methyl-1-propanesulfonic acid-co-2-hydroxyethyl methacrylate) hydrogel crosslinked by activated carbon. J. Macromol. Sci. A, 60, 135–144. https://doi.org/10.1080/10601325.2023.2165945
  • Iwuozor, K.O, Ighalo, J.O., Emenike, E.C., Ogunfowora, L.A., Igwegbe, C.A. (2021). Adsorption of methyl orange: A review on adsorbent performance. Curr. Opin. Green Sustain. Chem., 4, 100179. https://doi.org/10.1016/j.crgsc.2021.100179
  • Jiang, Y., Liu, B., Xu, J., Pan, K., Hou, H., Hu, J., & Yang, J. (2018). Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydrate Polymers, 182(July 2017), 106–114. https://doi.org/10.1016/j.carbpol.2017.10.097
  • Kim, S. H., Kim, D. S., Moradi, H., Chang, Y. Y., & Yang, J. K. (2023). Highly porous biobased graphene-like carbon adsorbent for dye removal: Preparation, adsorption mechanisms and optimization. J. Environ. Chem. Eng., 11(2), 109278. https://doi.org/10.1016/j.jece.2023.109278
  • Liu, H., Wang, K., Zhang, D., Zhao, D., Zhai, J., Cui, W. (2023). Adsorption and catalytic removal of methyl orange from water by PIL-GO/TiO2/Fe3O4 composites. Mater Sci Semicond Process. 154, 107215. https://doi.org/10.1016/j.mssp.2022.107215
  • Liu, Y., Liu, X., Dong, W., Zhang, L., Kong, Q., & Wang, W. (2017). Efficient Adsorption of Sulfamethazine onto Modified Activated Carbon: A Plausible Adsorption Mechanism. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-12805-6
  • Omorogie, M. O., Agbadaola, M. T., Olatunde, A. M., Helmreich, B., & Babalola, J. O. (2022). Surface equilibrium and dynamics for the adsorption of anionic dyes onto MnO2/biomass micro-composite. Green Chemistry Letters and Reviews, 15(1), 49–58. https://doi.org/10.1080/17518253.2021.2018508
  • Onder, A. & Ozay, H. (2021). Highly efficient removal of methyl orange from aqueous media by amine functional cyclotriphosphazene submicrospheres as reusable column packing material. Chem. Eng. Process.: Process Intensif., 165, 108427. https://doi.org/10.1016/J.CEP.2021.108427
  • Onder, A., Ilgin, P., Ozay, H., & Ozay, O. (2020). Removal of dye from aqueous medium with pH-sensitive poly[(2-(acryloyloxy)ethyl]trimethylammonium chloride-co-1-vinyl-2-pyrrolidone] cationic hydrogel. J. Environ. Chem. Eng., 8(5), 104436. https://doi.org/10.1016/j.jece.2020.104436
  • Onder, A., Ilgin, P., Ozay, H., & Ozay, O. (2022). Preparation of composite hydrogels containing fly ash as low-cost adsorbent material and its use in dye adsorption. Int. J. Environ. Sci. Technol., 19, 7031–7048. https://doi.org/10.1007/s13762-021-03622-6
  • Onder, A., Kıvanç, M. R., Ilgin, P., Ozay, H., & Ozay, O. (2023). Synthesis of p(HEMA-co-AETAC) nanocomposite hydrogel with vinyl-function montmorillonite nanoparticles and effective removal of methyl orange from aqueous solution. J. Macromol. Sci. A, 60(2), 108–123. https://doi.org/10.1080/10601325.2023.2169155
  • Ozsoy, F., Ozdilek, B., Onder, A., Ilgin, P., Ozay, H., & Ozay, O. (2022). Graphene nanoplate incorporated Gelatin/poly(2-(Acryloyloxy)ethyl trimethylammonium chloride) composites hydrogel for highly effective removal of Alizarin Red S from aqueous solution. Journal of Polymer Research, 29(11). https://doi.org/10.1007/s10965-022-03327-5
  • Roa, K., Tapiero, Y., Thotiyl, M. O., & Sánchez, J. (2021). Hydrogels based on poly([2-(acryloxy)ethyl] trimethylammonium chloride) and nanocellulose applied to remove methyl orange dye from water. Polymers, 13(14). https://doi.org/10.3390/polym13142265
  • Rong, N., Chen, C., Ouyang, K., Zhang, K., Wang, X., & Xu, Z. (2021). Adsorption characteristics of directional cellulose nanofiber/chitosan/montmorillonite aerogel as adsorbent for wastewater treatment. Sep. Purif. Technol., 274, 119120. https://doi.org/10.1016/j.seppur.2021.119120
  • Saafie, N., Samsudin, M. F. R., Sufian, S., & Ramli, R. M. (2019). Enhancement of the activated carbon over methylene blue removal efficiency via alkali-acid treatment. AIP Conference Proceedings, 2124(July). https://doi.org/10.1063/1.5117106
  • Sharma, S., Kaur, M., Sharma, C., Choudhary, A. and Paul, S. (2021). Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan–Lam Coupling and Oxidations. ACS Omega, 6, 30, 19529–19545. https://doi.org/10.1021/acsomega.1c01830
  • Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., & Zhang, S. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 7(24), 14395–14405. https://doi.org/10.1039/c7ra00287d
  • Singh, A., Kar, A. K., Singh, D., Verma, R., Shraogi, N., Zehra, A. et al. (2022). pH-responsive eco-friendly chitosan modified cenosphere/alginate composite hydrogel beads as carrier for controlled release of Imidacloprid towards sustainable pest control. J. Chem. Eng, 427, 131215. https://doi.org/10.1016/j.cej.2021.131215
  • Sugawara, A., Asoh, T. A., Takashima, Y., Harada, A., & Uyama, H. (2020). Composite hydrogels reinforced by cellulose-based supramolecular filler. Polym. Degrad. Stab., 177, 109157. https://doi.org/10.1016/j.polymdegradstab.2020.109157
  • Tian, H., Guo, Q., & Xu, D. (2010). Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst. Journal of Power Sources, 195(8), 2136–2142. https://doi.org/10.1016/J.JPOWSOUR.2009.10.006
  • Wang, L., Zhang, X., Xu, J., Wang, Q., & Fan, X. (2020). Synthesis of partly debranched starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride) catalyzed by horseradish peroxidase and the effect on adhesion to polyester/cotton yarn. Process Biochemistry, 97(March), 176–182. https://doi.org/10.1016/j.procbio.2020.07.015
  • Wu, L., Liu, X., Lv, G. et al. (2021). Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci Rep 11, 10640. https://doi.org/10.1038/s41598-021-90235-1
  • Xu, H., Zhang, Y., Cheng, Y., Tian, W., Zhao, Z., & Tang, J. (2019). Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution. Adsorp Sci Technol, 37(3–4), 217–235. https://doi.org/10.1177/0263617418822917
  • Zhang, L., Tu, L. Y., Liang, Y., Chen, Q., Li, Z. S., Li, C. H., … Li, W. (2018). Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Advances, 8(74), 42280–42291. https://doi.org/10.1039/c8ra08990f
There are 36 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Alper Önder 0000-0002-0775-0053

Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date January 28, 2023
Acceptance Date April 6, 2023
Published in Issue Year 2023

Cite

APA Önder, A. (2023). Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye. Journal of the Institute of Science and Technology, 13(3), 1902-1915. https://doi.org/10.21597/jist.1243905
AMA Önder A. Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye. J. Inst. Sci. and Tech. September 2023;13(3):1902-1915. doi:10.21597/jist.1243905
Chicago Önder, Alper. “Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1902-15. https://doi.org/10.21597/jist.1243905.
EndNote Önder A (September 1, 2023) Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye. Journal of the Institute of Science and Technology 13 3 1902–1915.
IEEE A. Önder, “Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1902–1915, 2023, doi: 10.21597/jist.1243905.
ISNAD Önder, Alper. “Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1902-1915. https://doi.org/10.21597/jist.1243905.
JAMA Önder A. Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye. J. Inst. Sci. and Tech. 2023;13:1902–1915.
MLA Önder, Alper. “Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1902-15, doi:10.21597/jist.1243905.
Vancouver Önder A. Preparation of Cationic Composite Hydrogel Improved by Activated Carbon and Its Use in Removal of Anionic Dye. J. Inst. Sci. and Tech. 2023;13(3):1902-15.