Research Article
BibTex RIS Cite

Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells

Year 2023, , 1916 - 1925, 01.09.2023
https://doi.org/10.21597/jist.1249897

Abstract

Carbon Nanodots (CDs)-modified chitosan and ginger (ginger/chitosan@CD) based biocompatible substrate was built with the purpose of assessing antiproliferation effect on prostate cancer cell line (PC-3), human prostate adenocarcinoma cell line (LNCaP), and breast cancer cell line (MCF-7). CDs were fabricated through a solvothermal synhesis process, and characterized with TEM, SERS, and UV-vis spectroscopy. In this study, the cytotoxic impact of ginger/chitosan CD, which was synthesized for the first time, was evaluated as a function of both dose (maximum concentration 500 μg/mL) and time (in 24 and 48 hours) in cancer cell lines by XTT assay. After 48 hours, the ginger/chitosan@CD combination was found to have a 50% inhibitory concentration (IC50) of 178.08 μg/mL in the PC-3 cell line, 246.44 μg/mL in the LNCaP prostate cancer cells, and 345.74 μg/mL in the MCF-7. Cancer cell proliferation was efficiently suppressed by the ginger/chitosan@CDs.

References

  • Alur, İ., Dodurga, Y., Seçme, M., Elmas, L., Bağcı, G., Gökşin, İ., & Avcı, Ç. B. (2016). Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells. Gene, 585(2), 241-246.
  • Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726-6744.
  • Bhattarai, N., Gunn, J., & Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 62(1), 83-99.
  • Brindhadevi, K., Garalleh, H. A., Alalawi, A., Al-Sarayreh, E., & Pugazhendhi, A. (2023). Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochemical Engineering Journal, 108828.
  • Builders, P. F., & Arhewoh, M. I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch‐Stärke, 68(9-10), 864-873.
  • Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., . . . Murray, D. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129(37), 11318-11319.
  • Chen, C.-K., Wang, Q., Jones, C. H., Yu, Y., Zhang, H., Law, W.-C., . . . Pfeifer, B. A. (2014). Synthesis of pH-responsive chitosan nanocapsules for the controlled delivery of doxorubicin. Langmuir, 30(14), 4111-4119.
  • Chen, R., Zheng, X., Qian, H., Wang, X., Wang, J., & Jiang, X. (2013). Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomaterials science, 1(3), 285-293.
  • Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899.
  • Ge, J., Jia, Q., Liu, W., Guo, L., Liu, Q., Lan, M., . . . Wang, P. (2015). Red‐emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Advanced materials, 27(28), 4169-4177.
  • Huang, X., Yang, L., Hao, S., Zheng, B., Yan, L., Qu, F., . . . Sun, X. (2017). N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 4(3), 537-540.
  • Jung, N., Kim, S. M., Kang, D. H., Chung, D. Y., Kang, Y. S., Chung, Y.-H., . . . Sung, Y.-E. (2013). High-performance hybrid catalyst with selectively functionalized carbon by temperature-directed switchable polymer. Chemistry of Materials, 25(9), 1526-1532.
  • Li, C.-L., Ou, C.-M., Huang, C.-C., Wu, W.-C., Chen, Y.-P., Lin, T.-E., . . . Zhou, H.-C. (2014). Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2(28), 4564-4571. Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials, 25(31), 4929-4947.
  • Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
  • Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte chemie, 119(34), 6593-6595.
  • Liu, M., Xu, Y., Niu, F., Gooding, J. J., & Liu, J. (2016). Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, 141(9), 2657-2664.
  • Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., . . . Sun, X. (2012). Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced materials, 24(15), 2037-2041.
  • Ma, Y., Dai, J., Wu, L., Fang, G., & Guo, Z. (2017). Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer, 114, 113-121.
  • Mohammadi, S., Mohammadi, S., & Salimi, A. (2021). A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta, 224, 121895.
  • Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical communications, 48(70), 8835-8837.
  • Sarkar, T., Bohidar, H., & Solanki, P. R. (2018). Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International journal of biological macromolecules, 109, 687-697.
  • Shao, L., Chang, X., Zhang, Y., Huang, Y., Yao, Y., & Guo, Z. (2013). Graphene oxide cross-linked chitosan nanocomposite membrane. Applied Surface Science, 280, 989-992. Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: a brief review. Food and chemical toxicology, 45(5), 683-690.
  • Stepanidenko, E. A., Ushakova, E. V., Fedorov, A. V., & Rogach, A. L. (2021). Applications of carbon dots in optoelectronics. Nanomaterials, 11(2), 364.
  • Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., . . . Wang, H. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
  • Wang, H., Di, J., Sun, Y., Fu, J., Wei, Z., Matsui, H., . . . Zhou, S. (2015). Biocompatible PEG‐chitosan@ carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy. Advanced Functional Materials, 25(34), 5537-5547.
  • Wang, H., Mukherjee, S., Yi, J., Banerjee, P., Chen, Q., & Zhou, S. (2017). Biocompatible chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy. ACS applied materials & interfaces, 9(22), 18639-18649.
  • Wang, H., Revia, M. R., Wang, K., Kant, M. R. J., Mu, Q., Gai, Z., . . . Zhang, M. (2017). Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging. Advanced Materials (Deerfield Beach, Fla.), 29(11).
  • Wang, J., Wang, C. F., & Chen, S. (2012). Amphiphilic egg‐derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chemie International Edition, 51(37), 9297-9301.
  • Xu, J., Miao, Y., Zheng, J., Wang, H., Yang, Y., & Liu, X. (2018). Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 10(23), 11211-11221.
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
  • Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., & Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical communications, 48(64), 7955-7957.
  • Zhang, S., Pu, Q., Liu, P., Sun, Q., & Su, Z. (2002). Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Analytica Chimica Acta, 452(2), 223-230.
  • Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical communications(41), 5116-5118.
Year 2023, , 1916 - 1925, 01.09.2023
https://doi.org/10.21597/jist.1249897

Abstract

References

  • Alur, İ., Dodurga, Y., Seçme, M., Elmas, L., Bağcı, G., Gökşin, İ., & Avcı, Ç. B. (2016). Anti-tumor effects of bemiparin in HepG2 and MIA PaCa-2 cells. Gene, 585(2), 241-246.
  • Baker, S. N., & Baker, G. A. (2010). Luminescent carbon nanodots: emergent nanolights. Angewandte Chemie International Edition, 49(38), 6726-6744.
  • Bhattarai, N., Gunn, J., & Zhang, M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 62(1), 83-99.
  • Brindhadevi, K., Garalleh, H. A., Alalawi, A., Al-Sarayreh, E., & Pugazhendhi, A. (2023). Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochemical Engineering Journal, 108828.
  • Builders, P. F., & Arhewoh, M. I. (2016). Pharmaceutical applications of native starch in conventional drug delivery. Starch‐Stärke, 68(9-10), 864-873.
  • Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., . . . Murray, D. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129(37), 11318-11319.
  • Chen, C.-K., Wang, Q., Jones, C. H., Yu, Y., Zhang, H., Law, W.-C., . . . Pfeifer, B. A. (2014). Synthesis of pH-responsive chitosan nanocapsules for the controlled delivery of doxorubicin. Langmuir, 30(14), 4111-4119.
  • Chen, R., Zheng, X., Qian, H., Wang, X., Wang, J., & Jiang, X. (2013). Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomaterials science, 1(3), 285-293.
  • Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899.
  • Ge, J., Jia, Q., Liu, W., Guo, L., Liu, Q., Lan, M., . . . Wang, P. (2015). Red‐emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Advanced materials, 27(28), 4169-4177.
  • Huang, X., Yang, L., Hao, S., Zheng, B., Yan, L., Qu, F., . . . Sun, X. (2017). N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorganic Chemistry Frontiers, 4(3), 537-540.
  • Jung, N., Kim, S. M., Kang, D. H., Chung, D. Y., Kang, Y. S., Chung, Y.-H., . . . Sung, Y.-E. (2013). High-performance hybrid catalyst with selectively functionalized carbon by temperature-directed switchable polymer. Chemistry of Materials, 25(9), 1526-1532.
  • Li, C.-L., Ou, C.-M., Huang, C.-C., Wu, W.-C., Chen, Y.-P., Lin, T.-E., . . . Zhou, H.-C. (2014). Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2(28), 4564-4571. Li, X., Rui, M., Song, J., Shen, Z., & Zeng, H. (2015). Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials, 25(31), 4929-4947.
  • Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
  • Liu, H., Ye, T., & Mao, C. (2007). Fluorescent carbon nanoparticles derived from candle soot. Angewandte chemie, 119(34), 6593-6595.
  • Liu, M., Xu, Y., Niu, F., Gooding, J. J., & Liu, J. (2016). Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, 141(9), 2657-2664.
  • Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., . . . Sun, X. (2012). Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced materials, 24(15), 2037-2041.
  • Ma, Y., Dai, J., Wu, L., Fang, G., & Guo, Z. (2017). Enhanced anti-ultraviolet, anti-fouling and anti-bacterial polyelectrolyte membrane of polystyrene grafted with trimethyl quaternary ammonium salt modified lignin. Polymer, 114, 113-121.
  • Mohammadi, S., Mohammadi, S., & Salimi, A. (2021). A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta, 224, 121895.
  • Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical communications, 48(70), 8835-8837.
  • Sarkar, T., Bohidar, H., & Solanki, P. R. (2018). Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International journal of biological macromolecules, 109, 687-697.
  • Shao, L., Chang, X., Zhang, Y., Huang, Y., Yao, Y., & Guo, Z. (2013). Graphene oxide cross-linked chitosan nanocomposite membrane. Applied Surface Science, 280, 989-992. Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: a brief review. Food and chemical toxicology, 45(5), 683-690.
  • Stepanidenko, E. A., Ushakova, E. V., Fedorov, A. V., & Rogach, A. L. (2021). Applications of carbon dots in optoelectronics. Nanomaterials, 11(2), 364.
  • Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., . . . Wang, H. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756-7757.
  • Wang, H., Di, J., Sun, Y., Fu, J., Wei, Z., Matsui, H., . . . Zhou, S. (2015). Biocompatible PEG‐chitosan@ carbon dots hybrid nanogels for two‐photon fluorescence imaging, near‐infrared light/pH dual‐responsive drug carrier, and synergistic therapy. Advanced Functional Materials, 25(34), 5537-5547.
  • Wang, H., Mukherjee, S., Yi, J., Banerjee, P., Chen, Q., & Zhou, S. (2017). Biocompatible chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy. ACS applied materials & interfaces, 9(22), 18639-18649.
  • Wang, H., Revia, M. R., Wang, K., Kant, M. R. J., Mu, Q., Gai, Z., . . . Zhang, M. (2017). Paramagnetic properties of metal-free boron-doped graphene quantum dots and their application for safe magnetic resonance imaging. Advanced Materials (Deerfield Beach, Fla.), 29(11).
  • Wang, J., Wang, C. F., & Chen, S. (2012). Amphiphilic egg‐derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angewandte Chemie International Edition, 51(37), 9297-9301.
  • Xu, J., Miao, Y., Zheng, J., Wang, H., Yang, Y., & Liu, X. (2018). Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale, 10(23), 11211-11221.
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
  • Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L., & Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical communications, 48(64), 7955-7957.
  • Zhang, S., Pu, Q., Liu, P., Sun, Q., & Su, Z. (2002). Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palladium with on-line preconcentration and separation. Analytica Chimica Acta, 452(2), 223-230.
  • Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical communications(41), 5116-5118.
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Hasan İlhan 0000-0002-4475-1629

Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date February 10, 2023
Acceptance Date May 19, 2023
Published in Issue Year 2023

Cite

APA İlhan, H. (2023). Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Journal of the Institute of Science and Technology, 13(3), 1916-1925. https://doi.org/10.21597/jist.1249897
AMA İlhan H. Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Iğdır Üniv. Fen Bil Enst. Der. September 2023;13(3):1916-1925. doi:10.21597/jist.1249897
Chicago İlhan, Hasan. “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1916-25. https://doi.org/10.21597/jist.1249897.
EndNote İlhan H (September 1, 2023) Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Journal of the Institute of Science and Technology 13 3 1916–1925.
IEEE H. İlhan, “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 3, pp. 1916–1925, 2023, doi: 10.21597/jist.1249897.
ISNAD İlhan, Hasan. “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1916-1925. https://doi.org/10.21597/jist.1249897.
JAMA İlhan H. Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1916–1925.
MLA İlhan, Hasan. “Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1916-25, doi:10.21597/jist.1249897.
Vancouver İlhan H. Green Synthesis of Biocompatible Hybrid Ginger/Chitosan Carbon Nanodot Exhibiting Antiproliferative Activity on Carcinoma Cells. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1916-25.