Research Article
BibTex RIS Cite

Low Temperature Production and Optimization of EMIMBF4 Ionic Liquid Doped SnO2 Electron Transfer Layer for Perovskite Solar Cells

Year 2023, , 2130 - 2142, 01.09.2023
https://doi.org/10.21597/jist.1273053

Abstract

Electron transfer layer (ETL) is vital importance for obtaining high performance perovskite solar cells (PSC). This can be achieved by producing tin oxide (SnO2) ETL, which is produced at high temperature, has appropriate energy band alignment, high optical transmittance and high carrier mobility. ETL produced at low temperature generally has low crystallization, poor electron mobility, and abundant defects at grain boundaries. This prevents efficient load transport, creates recombination and causes serious energy losses. In this paper, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid (IL) was added into SnO2 ETL in different concentrations to improve these negative properties caused by the production of SnO2 ETL at low temperature, using spin-coater technique at low temperature (100 °C) was prepared. Optical properties of EMIMBF4 IL doped SnO2 ETL and perovskite films were investigated using UV-vis-NIR spectrometry and photoluminescence spectrophotometer (PL) measurement. The surface morphology of the produced films was investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The crystal structure analysis of the films was carried out by X-ray diffraction (XRD). The hydrophilic/hydrophobic behavior of the surfaces was evaluated using contact angle measurement. It has been observed that EMIMBF4 doped SnO2 ETL films have fewer surface defects by passivation of surface defects compared to pure SnO2 ETL film and they crystallize at a relatively low and economical temperature (100°C). It has been determined that 0.5% EMIMBF4 doped films give better optical and structural results than other doped and pure ETL films, albeit low.

References

  • Abate, A., Hollman, D. J., Teuscher, J., Pathak, S., Avolio, R., D’Errico, G., Vitiello, G., Fantacci, S., Snaith, H. J. (2013). Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells, Journal of the American Chemical Society. 135, 13538–13548.
  • Abulikemu, M., Barbé, J., El Labban, A., Eid, J., Del Gobbo, S. (2017). Planar heterojunction perovskite solar cell based on CdS electron transport layer. Thin Solid Films 636:512–518.
  • Akin, S. (2020). Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches. Solar Energy, 199:136–142.
  • Akin, S., ve Sonmezoglu, S. (2018). Emerging materials for energy conversion and storage: Metal oxide nanoparticles as electron transport layer in third generation solar cells, Emerging Materials for Energy Conversion and Storage, 39–79.
  • Alanazi, T. I., Game, O. S., Smith, J. A., Kilbride, R. C., Greenland, C., Jayaprakash, R., Lidzey, D. G. (2020). Potassium iodide reduces the stability of triple-cation perovskite solar cells. RSC Advances, 10(66), 40341–40350.
  • Ansari, M. I. H., Qurashi, A., Nazeeruddin, M. K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 35, Pages 1-24,1389-5567.
  • Atabaev, T. S. (2017). Stable HTM-free organohalide perovskite-based solar cells. Materials Today Proceeding, 4(3):4919–4923.
  • Baumeler, T., Arora, N., Hinderhofer, A., Akin, S., Greco, A., Abdi-Jalebi, M., Shivanna, R., Uchida, R., Liu, Y., Schreiber, F., Zakeeruddin, S. M., Friend, R. H., Graetzel, M. and Dar, M. I. (2020). Minimizing the trade-off between photocurrent and photovoltage in triple-cation mixed-halide perovskite solar cells, The Journal of Physical Chemistry Letters,11(23), 10188–10195.
  • Bhatnagar, M., Dhall, S., Kaushik, V., Kaushal, A., & Mehta, B.R., (2017). Improved selectivity of SnO2:C alloy nanoparticles towards H2 and ethanol reducing gases; role of SnO2:C electronic interaction, Sensor and Actuators B-Chemical, 246, 336–343.
  • Cheng, H., Li, Y., Zhang, M., Zhao, K., Wang, Z.-S. (2020). Self-assembled ionic liquid for highly efficient electron transport layer free perovskite solar cells, ChemSusChem, 13,2779 –2785.
  • Colella, C. A., Griffin, M., Kingsley, J., Scarratt, J., Luszczynska, N., Ulanski, B. J. (2019). Slot-die coating of double polymer layers for the fabrication of organic light emitting diodes. Micromachines, 10:(1),53.
  • Deng, X., Xie, L., Wang, S., Li, C., Wang, A., Yuan, Y., Hao, F. (2020). Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 398, 125594.
  • Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. and Tress, W. (2018). Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells, Nature Energy, 3(1), 61–67.
  • Elseman, A. M., Sajid, S., Shalan, A. E, Mohamed, S. A, Rashad, M. M. (2019). Recent progress concerning inorganic hole transport layers for efficient perovskite solar cells. Applied Physics A-Materials Science & Processing, 125(7):476.
  • Ebiç, M., Akar, Ş., Akman, E., Özel, F., Akin, S. (2022). SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. International Journal of Innovative Engineering Applications, 6 (1) , 170-182.
  • Fan, X.-H., Chen, Y.-P., & Su, C.-S. (2016). Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide. Journal of Chemical & Engineering Data, 61(2), 920–927.
  • Feng, J., Feng, J., Yang, Z., Yang, D., Ren, X., Zhu, X., Jin, Z., Zi, W., Wei, Q., Liu, S. (2017). E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy, 36:1–8.
  • Foelske-Schmitz, A., Weingarth, D., & Kötz, R. (2011). Quasi in situ XPS study of electrochemical oxidation and reduction of highly oriented pyrolytic graphite in [1-ethyl-3-methylimidazolium][BF4] electrolytes. Electrochimica Acta, 56(28), 10321–10331.
  • Gao, L., Huang, K., Long, C., Zeng, F., Liu, B., & Yang, J. (2020). Fully slot-die-coated perovskite solar cells in ambient condition. Applied Physics A. 126:452.
  • Gheno, A., Pham, T. T. T., Bin, C. D., Bouclé, J., Ratier, B., Vedraine, S. (2017). Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability. Solar Energy Materials and Solar Cells, 161:347–354.
  • Guo, H., Chen, H., Zhang, H., Huang, X., Yang, J., Wang, B., Li, Y., Wang, L., Niu, X., Wang, Z. (2019). Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency. Nano Energy, 59:1–9.
  • Hassanien, A., Hashem, H., Kamel G., Soltan, Moustafa, A., Hammam, M., S., Ramadan, A. A., (2016). Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices, International Journal of Thin Films Science and Technology, 65, 55–65.
  • Hu, Y., Aygüler, M. F., Petrus, M. L., Bein, T., & Docampo, P. (2017). Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Letters, 2(10), 2212–2218.
  • Jeon, Y., Lee, D., Yoo, H. (2022). Recent advances in metal-oxide thin-film transistors: Flexible/stretchable devices, ıntegrated circuits, biosensors, and neuromorphic applications. Coatings, 12, 204.
  • Jung, H. S, Han, G. S, Park, N-G, Ko, M. J. (2019). Flexible Perovskite Solar Cells, Joule, 3, 8, 1850-1880.
  • Kang, Y., Li, Z., Xu, K., He, X., Wei, S., & Cao, Y., (2019). Hollow SnO2 nanospheres with single-shelled structure and the application for supercapacitors. Journal of Alloys and Compounds, 779, 728–734.
  • Kim, J., Jung, Y., Heo, Y., Hwang, K., Qin, T., Kim, D., & Vak, D. (2018). Slot-die coated planar perovskite solar cells via blowing and heating assiste done step deposition. Solar Energy Materials and Solar Cells, 179, 80–86.
  • Kim, M., Jeong, J., Lu, H., Lee, K., Felix, T., Liu, Y., Choi-In, W., Choi S. J., Jo, Y., Kim, H. B., Mo, S. I., Kim, Y. K. (2022). Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells, Science, 375(6578), 302–306.
  • Leijtens, T., Eperon, G., Pathak, E. S., Abate, A., Lee, M. M., Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nature Communications, 4, 2885.
  • Li, F., Shen, Z., Weng, Y., Lou, Q., Chen, C., Shen, L., Guo, W., & Li, G. (2020). Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22 % Efficiency and Long-Term Stability. Advanced Functional Materials, 30:45, 2004933.
  • Li, H., Su, Q., Kang, J., Huang, M., Feng, M., Feng, H., Huang, P., & Du, G., (2018). Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Materials Letters, 217, 276–280.
  • Lin, S., Yang, B., Qiu, X., Jiaqi-Yan, J., Shi, J., Yuan, Y., Tan, W., Liu, X., Huang, H., Gao, Y., Zhou, C. (2018). E.fficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material. Organic Electronics, 53:235–241.
  • Mahmood, K., Sarwar, S., Mehran, M. T. (2017). Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 7:17044–17062.
  • Maniarasu, S., Manjunath, V., Veerappan, G., & Ramasamy, E. (2018). Flexible Perovskite Solar Cells. Perovskite Photovoltaics, 341–371.
  • Ozer, E., Kufel, J., Myers, J., Biggs, J., Brown, G., Rana, A., Sou, A., Ramsdale, C., White, S. A. (2020). Hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate. Nature Electronics, 3, 419–425.
  • Pandey, R., Saini, A. P., Chaujar, R. (2019). Numerical simulations: toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL. Vacuum, 159:173–18.
  • Park, H. H. (2022). Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials, 12, 4326.
  • Peng, Y., Cheng, Y., Wang, C., Zhang, C., Xia, H., Huang, K., Tong, S., & Yang, J. (2018). Fully doctor-bladed planar heterojunction perovskite solar cell sunder ambient condition. Organic Electronics, 58, 153–158.
  • Ponseca, C. S., Hutter, E. M., Piatkowski, P., Cohen, B., Pascher, T., Douhal, A., Yartsev, A., Sundström, V. and Savenije, T. J. (2015). Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM, and Spiro-OMeTAD: Role of dark carriers, Journal of the American Chemical Society,137(51), 16043–16048. Qin, M., Ma, J., Ke, W., Qin, P., Lei, H., Tao, H., Zheng, X., Xiong, L., Liu, Q., Chen, Z., et al. (2016). Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. ACS Applied Materials Interfaces, 8, 8460–8466.
  • Razeghizadeh, A.R., Kazeminezhad, I., Zalaghi, L., & Rafee, V., (2018). Effects of sol concentration on the structural and optical properties of SnO2 nanoparticle. Iran Journal of Chemistry Chemical. Engineering, 37, 25-32.
  • Sakata, T., Nishitani, S., Saito, A., Fukasawa, Y. (2021). Solution-Gated Ultrathin Channel Indium Tin Oxide-Based Field-Effect Transistor Fabricated by a One-Step Procedure that Enables High-Performance Ion Sensing and Biosensing. ACS Applied Materials Interfaces, 13, 38569–38578.
  • Shalan, A. E., Sharmoukh, W., Elshazly, A.N., Elnagar, M. M., Al Kiey, S. A., Rashad, M. M., Allam, N. K. (2020). Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells. Sustainable Materials and Technologies, 26:e00226.
  • Sharma, A., Chourasia, N.K., Acharya, V., Pal, N., Biring, S., Liu, S.-W., Pal, B.N. (2020). Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electronics Materials. Letters. 16, 22–34.
  • Valadi, K., Gharibi, S., Taheri-Ledari, R., Akin, S., Maleki, A., & Shalan, A. E. (2021). Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 19(3), 2185–2207.
  • Wang, H., Jiang, G., Tan, X., Liao, J., Yang, X., Yuan, R., & Chai, Y., (2018). Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorgonic Chemistry Communications, 95, 67–72.
  • Wilkes, J. S., & Zaworotko, M. J. (1992). Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, (13), 965.
  • Xia, R., Fei, Z., Drigo, N., Bobbink, F. D., Huang, Z., Jasiunas, R., Franckevicius, M., Gulbinas, V., Mensi, M., Fang, X., Roldan-Carmona, C., Nazeeruddin, M. K., Dyson. P. J. (2019). Retarding thermal degradation in hybrid perovskites by ionic liquid additives, Advanced Functional Materials. 29, 1902021.
  • Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348 (6240), 1234–1237.
  • Ye, Q., Li, M., Shi, X. B., Zhuo, M. P., Wang, K. L., Igbari, F., Wang, Z. K. ve Liao, L. S. (2020). UV-stable and highly efficient perovskite solar cells by employing wide band gap NaTaO3 as an electron-transporting layer, ACS Applied Materials & Interfaces,12 (19), 21772-21778.
  • Zaki, A. H., Shalan, A. E., El-Shafeay, A., Gadelhak, Y. M., Ahmed, E., Abdel-Salam, M. O., Sobhi, M., El-dek, S. I. (2020). Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2(5):2080–2086.
  • Zhu, L., Ye, J., Zhang, X., Zheng, H., Liu, G., Pan, X. S., Dai, J. (2017). Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer, Journal of Materials Chemistry A, 5, 3675.

Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu

Year 2023, , 2130 - 2142, 01.09.2023
https://doi.org/10.21597/jist.1273053

Abstract

Yüksek performansa sahip perovskite güneş hücreleri (PSC)’nin elde edilebilmesi için elektron transfer tabakası (ETL) oldukça hayati öneme sahiptir. Bu durum yüksek sıcaklıkta üretilen, uygun enerji bandı hizalamasına ve yüksek optik geçirgenlik ile yüksek taşıyıcı hareketliliğine sahip kalay oksit (SnO2) ETL'nın üretilebilmesiyle mümkün olabilmektedir. Düşük sıcaklıkta üretilen ETL’nda genellikle düşük kristalleşme, zayıf elektron hareketliliği ve tane sınırlarında bol miktarda kusur meydana gelmektedir. Bu da verimli yük taşınmasını engelleyerek, rekombinasyon oluşturmakta ve ciddi enerji kayıplarına sebep olmaktadır. Bu çalışmada düşük sıcaklıkta SnO2 ETL üretiminden kaynaklanan bu olumsuz özellikleri iyileştirmek amacıyla SnO2 ETL içerisine 1-etil-3-metilimidazolyum tetrafloroborat (EMIMBF4) iyonik sıvı (IL)’sı farklı konsantrasyonlarda katkılanarak döndürerek kaplama (spin-coater) tekniği ile düşük sıcaklıkta (100 °C) hazırlanmıştır. EMIMBF4 IL katkılı SnO2 ETL ve perovskite filmlerin optik özellikleri UV-vis-NIR spektrometresi ve fotolüminesans spektrofotometresi (PL) ölçümü kullanılarak araştırılmıştır. Üretilen filmlerin alan emisyonlu taramalı elektron mikroskobu (FE-SEM) ve atomik kuvvet mikroskobu (AFM) ile yüzey morfolojisi incelenmiştir. Filmlerin kristal yapı analizi ise X-ışını kırınımı (XRD) ile gerçekleştirilmiştir. Temas açısı ölçümü kullanılarak yüzeylerin hidrofilik/hidrofobik davranışları değerlendirilmiştir. EMIMBF4 katkılı SnO2 ETL filmlerin saf SnO2 ETL filme göre yüzey kusurlarının pasivize edilerek daha az yüzey kusurlarına sahip oldukları ve nispeten daha düşük ve ekonomik bir sıcaklık da (100°C) kristalleştikleri görülmüştür. %0.5 EMIMBF4 katkılı filmlerin düşük de olsa diğer katkılı ve saf ETL filmlere göre daha iyi optik ve yapısal sonuçlar verdiği tespit edilmiştir.

References

  • Abate, A., Hollman, D. J., Teuscher, J., Pathak, S., Avolio, R., D’Errico, G., Vitiello, G., Fantacci, S., Snaith, H. J. (2013). Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells, Journal of the American Chemical Society. 135, 13538–13548.
  • Abulikemu, M., Barbé, J., El Labban, A., Eid, J., Del Gobbo, S. (2017). Planar heterojunction perovskite solar cell based on CdS electron transport layer. Thin Solid Films 636:512–518.
  • Akin, S. (2020). Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches. Solar Energy, 199:136–142.
  • Akin, S., ve Sonmezoglu, S. (2018). Emerging materials for energy conversion and storage: Metal oxide nanoparticles as electron transport layer in third generation solar cells, Emerging Materials for Energy Conversion and Storage, 39–79.
  • Alanazi, T. I., Game, O. S., Smith, J. A., Kilbride, R. C., Greenland, C., Jayaprakash, R., Lidzey, D. G. (2020). Potassium iodide reduces the stability of triple-cation perovskite solar cells. RSC Advances, 10(66), 40341–40350.
  • Ansari, M. I. H., Qurashi, A., Nazeeruddin, M. K. (2018). Frontiers, opportunities, and challenges in perovskite solar cells: A critical review, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Volume 35, Pages 1-24,1389-5567.
  • Atabaev, T. S. (2017). Stable HTM-free organohalide perovskite-based solar cells. Materials Today Proceeding, 4(3):4919–4923.
  • Baumeler, T., Arora, N., Hinderhofer, A., Akin, S., Greco, A., Abdi-Jalebi, M., Shivanna, R., Uchida, R., Liu, Y., Schreiber, F., Zakeeruddin, S. M., Friend, R. H., Graetzel, M. and Dar, M. I. (2020). Minimizing the trade-off between photocurrent and photovoltage in triple-cation mixed-halide perovskite solar cells, The Journal of Physical Chemistry Letters,11(23), 10188–10195.
  • Bhatnagar, M., Dhall, S., Kaushik, V., Kaushal, A., & Mehta, B.R., (2017). Improved selectivity of SnO2:C alloy nanoparticles towards H2 and ethanol reducing gases; role of SnO2:C electronic interaction, Sensor and Actuators B-Chemical, 246, 336–343.
  • Cheng, H., Li, Y., Zhang, M., Zhao, K., Wang, Z.-S. (2020). Self-assembled ionic liquid for highly efficient electron transport layer free perovskite solar cells, ChemSusChem, 13,2779 –2785.
  • Colella, C. A., Griffin, M., Kingsley, J., Scarratt, J., Luszczynska, N., Ulanski, B. J. (2019). Slot-die coating of double polymer layers for the fabrication of organic light emitting diodes. Micromachines, 10:(1),53.
  • Deng, X., Xie, L., Wang, S., Li, C., Wang, A., Yuan, Y., Hao, F. (2020). Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chemical Engineering Journal, 398, 125594.
  • Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. and Tress, W. (2018). Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells, Nature Energy, 3(1), 61–67.
  • Elseman, A. M., Sajid, S., Shalan, A. E, Mohamed, S. A, Rashad, M. M. (2019). Recent progress concerning inorganic hole transport layers for efficient perovskite solar cells. Applied Physics A-Materials Science & Processing, 125(7):476.
  • Ebiç, M., Akar, Ş., Akman, E., Özel, F., Akin, S. (2022). SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. International Journal of Innovative Engineering Applications, 6 (1) , 170-182.
  • Fan, X.-H., Chen, Y.-P., & Su, C.-S. (2016). Density and Viscosity Measurements for Binary Mixtures of 1-Ethyl-3-methylimidazolium Tetrafluoroborate ([Emim][BF4]) with Dimethylacetamide, Dimethylformamide, and Dimethyl Sulfoxide. Journal of Chemical & Engineering Data, 61(2), 920–927.
  • Feng, J., Feng, J., Yang, Z., Yang, D., Ren, X., Zhu, X., Jin, Z., Zi, W., Wei, Q., Liu, S. (2017). E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy, 36:1–8.
  • Foelske-Schmitz, A., Weingarth, D., & Kötz, R. (2011). Quasi in situ XPS study of electrochemical oxidation and reduction of highly oriented pyrolytic graphite in [1-ethyl-3-methylimidazolium][BF4] electrolytes. Electrochimica Acta, 56(28), 10321–10331.
  • Gao, L., Huang, K., Long, C., Zeng, F., Liu, B., & Yang, J. (2020). Fully slot-die-coated perovskite solar cells in ambient condition. Applied Physics A. 126:452.
  • Gheno, A., Pham, T. T. T., Bin, C. D., Bouclé, J., Ratier, B., Vedraine, S. (2017). Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability. Solar Energy Materials and Solar Cells, 161:347–354.
  • Guo, H., Chen, H., Zhang, H., Huang, X., Yang, J., Wang, B., Li, Y., Wang, L., Niu, X., Wang, Z. (2019). Low-temperature processed yttrium-doped SrSnO3 perovskite electron transport layer for planar heterojunction perovskite solar cells with high efficiency. Nano Energy, 59:1–9.
  • Hassanien, A., Hashem, H., Kamel G., Soltan, Moustafa, A., Hammam, M., S., Ramadan, A. A., (2016). Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices, International Journal of Thin Films Science and Technology, 65, 55–65.
  • Hu, Y., Aygüler, M. F., Petrus, M. L., Bein, T., & Docampo, P. (2017). Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Letters, 2(10), 2212–2218.
  • Jeon, Y., Lee, D., Yoo, H. (2022). Recent advances in metal-oxide thin-film transistors: Flexible/stretchable devices, ıntegrated circuits, biosensors, and neuromorphic applications. Coatings, 12, 204.
  • Jung, H. S, Han, G. S, Park, N-G, Ko, M. J. (2019). Flexible Perovskite Solar Cells, Joule, 3, 8, 1850-1880.
  • Kang, Y., Li, Z., Xu, K., He, X., Wei, S., & Cao, Y., (2019). Hollow SnO2 nanospheres with single-shelled structure and the application for supercapacitors. Journal of Alloys and Compounds, 779, 728–734.
  • Kim, J., Jung, Y., Heo, Y., Hwang, K., Qin, T., Kim, D., & Vak, D. (2018). Slot-die coated planar perovskite solar cells via blowing and heating assiste done step deposition. Solar Energy Materials and Solar Cells, 179, 80–86.
  • Kim, M., Jeong, J., Lu, H., Lee, K., Felix, T., Liu, Y., Choi-In, W., Choi S. J., Jo, Y., Kim, H. B., Mo, S. I., Kim, Y. K. (2022). Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells, Science, 375(6578), 302–306.
  • Leijtens, T., Eperon, G., Pathak, E. S., Abate, A., Lee, M. M., Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nature Communications, 4, 2885.
  • Li, F., Shen, Z., Weng, Y., Lou, Q., Chen, C., Shen, L., Guo, W., & Li, G. (2020). Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22 % Efficiency and Long-Term Stability. Advanced Functional Materials, 30:45, 2004933.
  • Li, H., Su, Q., Kang, J., Huang, M., Feng, M., Feng, H., Huang, P., & Du, G., (2018). Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Materials Letters, 217, 276–280.
  • Lin, S., Yang, B., Qiu, X., Jiaqi-Yan, J., Shi, J., Yuan, Y., Tan, W., Liu, X., Huang, H., Gao, Y., Zhou, C. (2018). E.fficient and stable planar hole-transport-material-free perovskite solar cells using low temperature processed SnO2 as electron transport material. Organic Electronics, 53:235–241.
  • Mahmood, K., Sarwar, S., Mehran, M. T. (2017). Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 7:17044–17062.
  • Maniarasu, S., Manjunath, V., Veerappan, G., & Ramasamy, E. (2018). Flexible Perovskite Solar Cells. Perovskite Photovoltaics, 341–371.
  • Ozer, E., Kufel, J., Myers, J., Biggs, J., Brown, G., Rana, A., Sou, A., Ramsdale, C., White, S. A. (2020). Hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate. Nature Electronics, 3, 419–425.
  • Pandey, R., Saini, A. P., Chaujar, R. (2019). Numerical simulations: toward the design of 18.6% efficient and stable perovskite solar cell using reduced cerium oxide based ETL. Vacuum, 159:173–18.
  • Park, H. H. (2022). Modification of SnO2 Electron Transport Layer in Perovskite Solar Cells. Nanomaterials, 12, 4326.
  • Peng, Y., Cheng, Y., Wang, C., Zhang, C., Xia, H., Huang, K., Tong, S., & Yang, J. (2018). Fully doctor-bladed planar heterojunction perovskite solar cell sunder ambient condition. Organic Electronics, 58, 153–158.
  • Ponseca, C. S., Hutter, E. M., Piatkowski, P., Cohen, B., Pascher, T., Douhal, A., Yartsev, A., Sundström, V. and Savenije, T. J. (2015). Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM, and Spiro-OMeTAD: Role of dark carriers, Journal of the American Chemical Society,137(51), 16043–16048. Qin, M., Ma, J., Ke, W., Qin, P., Lei, H., Tao, H., Zheng, X., Xiong, L., Liu, Q., Chen, Z., et al. (2016). Perovskite Solar Cells Based on Low-Temperature Processed Indium Oxide Electron Selective Layers. ACS Applied Materials Interfaces, 8, 8460–8466.
  • Razeghizadeh, A.R., Kazeminezhad, I., Zalaghi, L., & Rafee, V., (2018). Effects of sol concentration on the structural and optical properties of SnO2 nanoparticle. Iran Journal of Chemistry Chemical. Engineering, 37, 25-32.
  • Sakata, T., Nishitani, S., Saito, A., Fukasawa, Y. (2021). Solution-Gated Ultrathin Channel Indium Tin Oxide-Based Field-Effect Transistor Fabricated by a One-Step Procedure that Enables High-Performance Ion Sensing and Biosensing. ACS Applied Materials Interfaces, 13, 38569–38578.
  • Shalan, A. E., Sharmoukh, W., Elshazly, A.N., Elnagar, M. M., Al Kiey, S. A., Rashad, M. M., Allam, N. K. (2020). Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells. Sustainable Materials and Technologies, 26:e00226.
  • Sharma, A., Chourasia, N.K., Acharya, V., Pal, N., Biring, S., Liu, S.-W., Pal, B.N. (2020). Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electronics Materials. Letters. 16, 22–34.
  • Valadi, K., Gharibi, S., Taheri-Ledari, R., Akin, S., Maleki, A., & Shalan, A. E. (2021). Metal oxide electron transport materials for perovskite solar cells: a review. Environmental Chemistry Letters, 19(3), 2185–2207.
  • Wang, H., Jiang, G., Tan, X., Liao, J., Yang, X., Yuan, R., & Chai, Y., (2018). Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorgonic Chemistry Communications, 95, 67–72.
  • Wilkes, J. S., & Zaworotko, M. J. (1992). Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications, (13), 965.
  • Xia, R., Fei, Z., Drigo, N., Bobbink, F. D., Huang, Z., Jasiunas, R., Franckevicius, M., Gulbinas, V., Mensi, M., Fang, X., Roldan-Carmona, C., Nazeeruddin, M. K., Dyson. P. J. (2019). Retarding thermal degradation in hybrid perovskites by ionic liquid additives, Advanced Functional Materials. 29, 1902021.
  • Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348 (6240), 1234–1237.
  • Ye, Q., Li, M., Shi, X. B., Zhuo, M. P., Wang, K. L., Igbari, F., Wang, Z. K. ve Liao, L. S. (2020). UV-stable and highly efficient perovskite solar cells by employing wide band gap NaTaO3 as an electron-transporting layer, ACS Applied Materials & Interfaces,12 (19), 21772-21778.
  • Zaki, A. H., Shalan, A. E., El-Shafeay, A., Gadelhak, Y. M., Ahmed, E., Abdel-Salam, M. O., Sobhi, M., El-dek, S. I. (2020). Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2(5):2080–2086.
  • Zhu, L., Ye, J., Zhang, X., Zheng, H., Liu, G., Pan, X. S., Dai, J. (2017). Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer, Journal of Materials Chemistry A, 5, 3675.
There are 51 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Metallurgical and Materials
Authors

Murat Ebiç 0000-0002-1280-4052

Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date March 29, 2023
Acceptance Date June 6, 2023
Published in Issue Year 2023

Cite

APA Ebiç, M. (2023). Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu. Journal of the Institute of Science and Technology, 13(3), 2130-2142. https://doi.org/10.21597/jist.1273053
AMA Ebiç M. Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu. Iğdır Üniv. Fen Bil Enst. Der. September 2023;13(3):2130-2142. doi:10.21597/jist.1273053
Chicago Ebiç, Murat. “Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi Ve Optimizasyonu”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 2130-42. https://doi.org/10.21597/jist.1273053.
EndNote Ebiç M (September 1, 2023) Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu. Journal of the Institute of Science and Technology 13 3 2130–2142.
IEEE M. Ebiç, “Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 3, pp. 2130–2142, 2023, doi: 10.21597/jist.1273053.
ISNAD Ebiç, Murat. “Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi Ve Optimizasyonu”. Journal of the Institute of Science and Technology 13/3 (September 2023), 2130-2142. https://doi.org/10.21597/jist.1273053.
JAMA Ebiç M. Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2130–2142.
MLA Ebiç, Murat. “Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi Ve Optimizasyonu”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 2130-42, doi:10.21597/jist.1273053.
Vancouver Ebiç M. Perovskite Güneş Hücreleri İçin EMIMBF4 İyonik Sıvı Katkılı SnO2 Elektron Transfer Tabakasının Düşük Sıcaklıkta Üretimi ve Optimizasyonu. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):2130-42.