Research Article
BibTex RIS Cite

1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi

Year 2023, , 1799 - 1803, 01.09.2023
https://doi.org/10.21597/jist.1295186

Abstract

1-Vinil 5-heksenil radikallerinin reaksiyon mekanizması için hesaplamalı bir çalışma, yoğunluk fonksiyonel teorisi kullanılarak gerçekleştirildi. Sonuçlarımız, termodinamik olarak kararlı 6-endo-trig halka kapanma ürününün oluşumuna yönelik reaksiyonun hem 5-ekso-trig hem de 6-endo-trig halka kapanma modları üzerinden ilerleyebileceğini gösterdi. Ayrıca, hesaplamalarımız, 5-ekso-trig halka kapanma ara ürününün kararlı olması durumunda, 6-endo-trig halka kapanma ürününün oluşumundan 5-ekso-trig modun sorumlu olacağını gösterdi.

Thanks

Yazar desteği için Hakkari Üniversitesi'ne teşekkür eder.

References

  • Beckwith, A. L. J., & O’Shea, D. M. (1986). Kinetics and mechanism of some vinyl radical cyclisations. Tetrahedron Letters, 27(38), 4525-4528.
  • Chatgilialoglu, C., Ferreri, C., Lucarini, M., Venturini, A. & Zavitsas, A. A. (1997). 5-exo-trig Versus 6-endo-trig c yclization of alk-5-enoyl radicals: the role of one-carbon ring expansion. Chemistry-A European Journal, 3(3), 376-387.
  • Curran, D. P., & Kuo, S. C. (1987). The tandem radical cyclization approach to angular triquinanes. Model studies and the total synthesis of (±)-Silphiperfolene and (±)-9-Episilphiperfolene. Tetrahedron, 43(20), 5653-5661.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2019). Gaussian 16, Revision C.01, Gaussian Inc. Wallingford CT.
  • Gilmore, K., & Alabugin, I. V. (2011). Cyclizations of alkynes: revisiting baldwin’s rules for ring closure. Chemical Reviews, 111(11), 6513-6556.
  • Gomez, A. M., Company, M. D., Uriel, C., Valverde, S., & Lopez, J. C. (2007). 6-endo Versus 5-exo radical cyclization: Streamlined syntheses of carbahexopyranoses and derivatives by 6-endo-trig radical cyclization. Tetrahedron Letters, 48(9), 1645-1649.
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28, 213-222.
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal Chemical Physics, 72(1), 650-654.
  • Liao, J., Yang, X., Ouyang, L., Lai, Y., Huang, J., & Luo, R. (2021). Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Organic Chemistry Frontier, 8(6), 1345-1363.
  • Maust, M. C., Hendy, C. M., Jui, N. T., & Blakey, S. B. (2022). Switchable regioselective 6-endo or 5-exo radical cyclization via photoredox catalysis. Journal of the American Chemical Society, 144(9), 3776-3781.
  • McLean, A. D., & Chandler, G. S. (1980). Contracted gaussian basis sets for molecular calculations. I. Second row atoms Z=11-18. Journal Chemical Physics 1980; 72 (10): 5639-5648.
  • Rashatasakhon, P., Ozdemir, A. D., Willis, J., & Padwa, A. (2004). Six- versus five-membered ring formation in radical cyclizations of 7-bromo-substituted hexahydroindolinones. Organic Letters, 6(6), 917-920. Stork, G., & Mook, R. (1986). Five vs six membered ring formation in the vinyl radical cyclization. Tetrahedron Letters, 27(38), 4529-4532.
  • Tucker, J. W., & Stephenson, C. R. J. (2011). Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. Organic Letters, 13(20), 5468-5471.
  • Yang, D., Gu, S., Yan, Y. L., Zhao, H. W., & Zhu, N. Y. (2002). Atom-transfer tandem radical cyclization reactions promoted by lewis acids. Angewandte Chemie International Edition, 41(16), 3014-3017.
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215-241.

Investigation of Computational Reaction Mechanism for The Formation of The 6-endo Cyclization Product of 1- Vinyl 5-Hexenyl Radicals

Year 2023, , 1799 - 1803, 01.09.2023
https://doi.org/10.21597/jist.1295186

Abstract

A computational study for reaction mechanism of 1-vinyl 5-hexenyl radicals is carried out using the density functional theory. The results showed that the reaction for the formation of thermodynamically stable 6-endo-trig cyclization product can progress over both 6-endo-trig and 5-exo-trig cyclization. Moreover, our computations demonstrated that when 5-exo-trig cyclization intermediate is stable, 5-exo-trig cyclization mode would be responsible for the formation of the 6-endo-trig cyclization product.

References

  • Beckwith, A. L. J., & O’Shea, D. M. (1986). Kinetics and mechanism of some vinyl radical cyclisations. Tetrahedron Letters, 27(38), 4525-4528.
  • Chatgilialoglu, C., Ferreri, C., Lucarini, M., Venturini, A. & Zavitsas, A. A. (1997). 5-exo-trig Versus 6-endo-trig c yclization of alk-5-enoyl radicals: the role of one-carbon ring expansion. Chemistry-A European Journal, 3(3), 376-387.
  • Curran, D. P., & Kuo, S. C. (1987). The tandem radical cyclization approach to angular triquinanes. Model studies and the total synthesis of (±)-Silphiperfolene and (±)-9-Episilphiperfolene. Tetrahedron, 43(20), 5653-5661.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2019). Gaussian 16, Revision C.01, Gaussian Inc. Wallingford CT.
  • Gilmore, K., & Alabugin, I. V. (2011). Cyclizations of alkynes: revisiting baldwin’s rules for ring closure. Chemical Reviews, 111(11), 6513-6556.
  • Gomez, A. M., Company, M. D., Uriel, C., Valverde, S., & Lopez, J. C. (2007). 6-endo Versus 5-exo radical cyclization: Streamlined syntheses of carbahexopyranoses and derivatives by 6-endo-trig radical cyclization. Tetrahedron Letters, 48(9), 1645-1649.
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28, 213-222.
  • Krishnan, R., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. Journal Chemical Physics, 72(1), 650-654.
  • Liao, J., Yang, X., Ouyang, L., Lai, Y., Huang, J., & Luo, R. (2021). Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Organic Chemistry Frontier, 8(6), 1345-1363.
  • Maust, M. C., Hendy, C. M., Jui, N. T., & Blakey, S. B. (2022). Switchable regioselective 6-endo or 5-exo radical cyclization via photoredox catalysis. Journal of the American Chemical Society, 144(9), 3776-3781.
  • McLean, A. D., & Chandler, G. S. (1980). Contracted gaussian basis sets for molecular calculations. I. Second row atoms Z=11-18. Journal Chemical Physics 1980; 72 (10): 5639-5648.
  • Rashatasakhon, P., Ozdemir, A. D., Willis, J., & Padwa, A. (2004). Six- versus five-membered ring formation in radical cyclizations of 7-bromo-substituted hexahydroindolinones. Organic Letters, 6(6), 917-920. Stork, G., & Mook, R. (1986). Five vs six membered ring formation in the vinyl radical cyclization. Tetrahedron Letters, 27(38), 4529-4532.
  • Tucker, J. W., & Stephenson, C. R. J. (2011). Tandem visible light-mediated radical cyclization-divinylcyclopropane rearrangement to tricyclic pyrrolidinones. Organic Letters, 13(20), 5468-5471.
  • Yang, D., Gu, S., Yan, Y. L., Zhao, H. W., & Zhu, N. Y. (2002). Atom-transfer tandem radical cyclization reactions promoted by lewis acids. Angewandte Chemie International Edition, 41(16), 3014-3017.
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215-241.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Meryem Fıstıkçı 0000-0001-7113-2551

Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date May 10, 2023
Acceptance Date June 22, 2023
Published in Issue Year 2023

Cite

APA Fıstıkçı, M. (2023). 1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi. Journal of the Institute of Science and Technology, 13(3), 1799-1803. https://doi.org/10.21597/jist.1295186
AMA Fıstıkçı M. 1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. September 2023;13(3):1799-1803. doi:10.21597/jist.1295186
Chicago Fıstıkçı, Meryem. “1-Vinil 5-Heksenil Radikallerinin 6-Endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1799-1803. https://doi.org/10.21597/jist.1295186.
EndNote Fıstıkçı M (September 1, 2023) 1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi. Journal of the Institute of Science and Technology 13 3 1799–1803.
IEEE M. Fıstıkçı, “1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 3, pp. 1799–1803, 2023, doi: 10.21597/jist.1295186.
ISNAD Fıstıkçı, Meryem. “1-Vinil 5-Heksenil Radikallerinin 6-Endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1799-1803. https://doi.org/10.21597/jist.1295186.
JAMA Fıstıkçı M. 1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:1799–1803.
MLA Fıstıkçı, Meryem. “1-Vinil 5-Heksenil Radikallerinin 6-Endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1799-03, doi:10.21597/jist.1295186.
Vancouver Fıstıkçı M. 1-Vinil 5-Heksenil Radikallerinin 6-endo Siklizasyon Ürününün Oluşumu için Hesaplamalı Reaksiyon Mekanizmasının İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(3):1799-803.