Research Article
BibTex RIS Cite

Crossed Cat1-Modules

Year 2023, , 2958 - 2972, 01.12.2023
https://doi.org/10.21597/jist.1303212

Abstract

It is well known that crossed modules over groups are an algebraic model of homotopy 2-type connected spaces. Moreover, cat1-groups and internal categories in the category of groups, i.e. 2-groups or group-groupoids, are categorically equivalent to crossed modules over groups. In this study, as a new algebraic model of homotopy 3-type connected spaces, the algebraic structure of the crossed module on the category of cat1-groups, i.e. the crossed cat1-module, is characterized and some of its properties are studied. It is also shown that crossed cat1-modules are categorically equivalent to crossed squares over groups and hence to cat2-groups.

References

  • Akız, H. F., Alemdar, N., Mucuk, O. ve Şahan, T. (2013). Coverings of internal groupoids and crossed modules in the category of groups with operations. Georgian Mathematical Journal, 20(2), 223 – 238.
  • Akız, H. F., Mucuk, O. ve Şahan, T. (2020). Liftings of crossed modules in the category of groups with operations. Boletim da Sociedade Paranaense de Matemática, 38(7), 181 – 193.
  • Alp, M. (1998). Pullbacks of crossed modules and cat1-groups. Turkish Journal of Mathematics, 22, 273 – 281.
  • Arvasi, Z. (1997). Crossed squares and 2-crossed modules of commutative algebras. Theory and Applications of Categories, 3(7), 160 – 181.
  • Brown, R. (1984). Coproducts of crossed P-modules: Applications to second homotopy groups and to the homology of groups. Topology, 23(3), 337 – 345.
  • Brown, R. (1987). From groups to groupoids: a brief survey. Bulletin of the London Mathematical Society, 19, 113 – 134.
  • Brown, R. ve Higgins, P. J. (1978). On the connection between the second relative homotopy groups of some related spaces. Proceedings of the London Mathematical Society, 36, 193-212.
  • Brown, R. ve Higgins, P. J. (1991). The classifying space of a crossed complex. Mathematical Proceedings of the Cambridge Philosophical Society, 110(1), 95 – 120.
  • Brown, R. ve Loday, J. L. (1987a). Homotopical excision, and Hurwicz theorems, for n-cubes of spaces. Proceedings of the London Mathematical Society, 54(3), 176 – 192.
  • Brown, R. ve Loday, J. L. (1987b). Van Kampen theorems for diagrams of spaces. Topology, 26(3), 311 – 335.
  • Brown, R. ve Spencer, C. B. (1976). G-groupoids, crossed modules and the fundamental groupoid of a topological group. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen series A, 79(4), 296 – 302.
  • Conduché, D. (1984). Modules croisés généralisés de longueur 2. Journal of Pure and Applied Algebra, 34(2-3), 155 – 178.
  • Dijkgraaf, R. ve Witten, E. (1990). Topological gauge theories and group cohomology. Communications in Mathematical Physics, 129(2), 393 – 429.
  • Ellis, G. J. (1988). Higher dimensional crossed modules of algebras. Journal of Pure and Applied Algebra, 52, 277 – 282.
  • Higgins, P. J. (1956). Groups with multiple operators. Proceedings of the London Mathematical Society, 3(6), 366 – 416.
  • Jurčo, B. (2011). Crossed module bundle gerbes; classification, string group and differential geometry. International Journal of Geometric Methods in Modern Physics, 8(05), 1079 – 1095.
  • Loday, J. L. (1982). Spaces with finitely many non-trivial homotopy groups. Journal of Pure and Applied Algebra, 24, 179 – 202.
  • Mac Lane, S. ve Whitehead, J. H. C. (1950). On the 3-types of a complex. Proceedings of the National Academy of Sciences, 36(1), 41 – 48.
  • Mackenzie, K. C. H. (1987). Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series 124, Cambridge University Press.
  • Martins, J. F. ve Picken, R. (2011). The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module. Differential Geometry and its Applications, 29(2), 179 – 206.
  • Mucuk, O. ve Şahan, T. (2014). Coverings and crossed modules of topological groups with operations. Turkish Journal of Mathematics, 38(5), 833 – 845.
  • Mucuk, O. ve Şahan, T. (2019). Group-groupoid actions and liftings of crossed modules. Georgian Mathematical Journal, 26(3), 437 – 447.
  • Mucuk, O., Şahan, T. ve Alemdar, N. (2014). Normality and quotients in crossed modules and group-groupoids. Applied Categorical Structures, 23, 415 – 428.
  • Mutlu, A. ve Porter, T. (2000). Freeness conditions for crossed squares and squared complexes, Kluwer Academic Publishers, 20(8), 345 – 368.
  • Norrie, K. (1987). Crossed modules and analogues of groups theorems. Dissertation, King’s College, University of London.
  • Norrie, K. (1990). Actions and automorphisms of crossed modules. Bulletin de la Société Mathématique de France, 118(2), 129 – 146.
  • Orzech, G. (1972a). Obstruction theory in categories. I. Journal of Pure and Applied Algebra, 2, 287 – 314.
  • Orzech, G. (1972b). Obstruction theory in categories. II. Journal of Pure and Applied Algebra, 2, 315 – 340.
  • Porter, T. (1987). Extensions, crossed modules and internal categories in categories of groups with operations. Proceedings of the Edinburgh Mathematical Society, 30, 373 – 381.
  • Porter, T. (1998). Topological quantum field theories from homotopy n-types. Journal of the London Mathematical Society, 58(3), 723 – 732.
  • Şahan, T. (2019). Further remarks on liftings of crossed modules. Hacettepe Journal of Mathematics and Statistics, 48(3), 743 – 752.
  • Şahan, T. ve Mucuk, O. (2020). Normality and quotient in the category of crossed modules within the category of groups with operations. Boletim da Sociedade Paranaense de Matemática, 38(7), 169 – 179.
  • Whitehead, J.H.C. (1946). Note on a previous paper entitled "On adding relations to homotopy groups. Annals of Mathematics, 47(4), 806 – 810.
  • Whitehead, J.H.C. (1948). On operators in relative homotopy groups. Annals of Mathematics, 49, 610 – 640.
  • Whitehead, J.H.C. (1949). Combinatorial homotopy. II. Bulletin of the American Mathematical Society, 55, 213 – 245.
  • Yetter, D.N. (1992). Topological quantum field theories associated to finite groups and crossed G-sets. Journal of Knot Theory and Its Ramifications, 1, 1–20.
  • Yetter, D.N. (1993). TQFT’s from homotopy 2-types. Journal of Knot Theory and Its Ramifications, 2, 113 – 123.

Çaprazlanmış Cat1-Modüller

Year 2023, , 2958 - 2972, 01.12.2023
https://doi.org/10.21597/jist.1303212

Abstract

Gruplar üzerindeki çaprazlanmış modüllerin homotopi 2-tipten bağlantılı uzayların bir cebirsel modeli olduğu iyi bilinen bir gerçektir. Ayrıca cat1-gruplar ve grupların kategorisindeki iç kategoriler, diğer bir ifadeyle 2-gruplar veya grup-grupoidler, kategoriksel olarak gruplar üzerindeki çaprazlanmış modüllere denktirler. Bu çalışmada, homotopi 3-tipten bağlantılı uzayların yeni bir cebirsel modeli olarak cat1-grupların kategorisindeki çaprazlanmış modül, yani çaprazlanmış cat1-modül, cebirsel yapısı karakterize edilip bazı özellikleri incelenmiştir. Ayrıca çaprazlanmış cat1-modüllerin kategoriksel olarak gruplar üzerindeki çaprazlanmış karelere ve böylece cat2-gruplara denk oldukları gösterilmiştir.

References

  • Akız, H. F., Alemdar, N., Mucuk, O. ve Şahan, T. (2013). Coverings of internal groupoids and crossed modules in the category of groups with operations. Georgian Mathematical Journal, 20(2), 223 – 238.
  • Akız, H. F., Mucuk, O. ve Şahan, T. (2020). Liftings of crossed modules in the category of groups with operations. Boletim da Sociedade Paranaense de Matemática, 38(7), 181 – 193.
  • Alp, M. (1998). Pullbacks of crossed modules and cat1-groups. Turkish Journal of Mathematics, 22, 273 – 281.
  • Arvasi, Z. (1997). Crossed squares and 2-crossed modules of commutative algebras. Theory and Applications of Categories, 3(7), 160 – 181.
  • Brown, R. (1984). Coproducts of crossed P-modules: Applications to second homotopy groups and to the homology of groups. Topology, 23(3), 337 – 345.
  • Brown, R. (1987). From groups to groupoids: a brief survey. Bulletin of the London Mathematical Society, 19, 113 – 134.
  • Brown, R. ve Higgins, P. J. (1978). On the connection between the second relative homotopy groups of some related spaces. Proceedings of the London Mathematical Society, 36, 193-212.
  • Brown, R. ve Higgins, P. J. (1991). The classifying space of a crossed complex. Mathematical Proceedings of the Cambridge Philosophical Society, 110(1), 95 – 120.
  • Brown, R. ve Loday, J. L. (1987a). Homotopical excision, and Hurwicz theorems, for n-cubes of spaces. Proceedings of the London Mathematical Society, 54(3), 176 – 192.
  • Brown, R. ve Loday, J. L. (1987b). Van Kampen theorems for diagrams of spaces. Topology, 26(3), 311 – 335.
  • Brown, R. ve Spencer, C. B. (1976). G-groupoids, crossed modules and the fundamental groupoid of a topological group. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen series A, 79(4), 296 – 302.
  • Conduché, D. (1984). Modules croisés généralisés de longueur 2. Journal of Pure and Applied Algebra, 34(2-3), 155 – 178.
  • Dijkgraaf, R. ve Witten, E. (1990). Topological gauge theories and group cohomology. Communications in Mathematical Physics, 129(2), 393 – 429.
  • Ellis, G. J. (1988). Higher dimensional crossed modules of algebras. Journal of Pure and Applied Algebra, 52, 277 – 282.
  • Higgins, P. J. (1956). Groups with multiple operators. Proceedings of the London Mathematical Society, 3(6), 366 – 416.
  • Jurčo, B. (2011). Crossed module bundle gerbes; classification, string group and differential geometry. International Journal of Geometric Methods in Modern Physics, 8(05), 1079 – 1095.
  • Loday, J. L. (1982). Spaces with finitely many non-trivial homotopy groups. Journal of Pure and Applied Algebra, 24, 179 – 202.
  • Mac Lane, S. ve Whitehead, J. H. C. (1950). On the 3-types of a complex. Proceedings of the National Academy of Sciences, 36(1), 41 – 48.
  • Mackenzie, K. C. H. (1987). Lie groupoids and Lie algebroids in differential geometry. London Mathematical Society Lecture Note Series 124, Cambridge University Press.
  • Martins, J. F. ve Picken, R. (2011). The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module. Differential Geometry and its Applications, 29(2), 179 – 206.
  • Mucuk, O. ve Şahan, T. (2014). Coverings and crossed modules of topological groups with operations. Turkish Journal of Mathematics, 38(5), 833 – 845.
  • Mucuk, O. ve Şahan, T. (2019). Group-groupoid actions and liftings of crossed modules. Georgian Mathematical Journal, 26(3), 437 – 447.
  • Mucuk, O., Şahan, T. ve Alemdar, N. (2014). Normality and quotients in crossed modules and group-groupoids. Applied Categorical Structures, 23, 415 – 428.
  • Mutlu, A. ve Porter, T. (2000). Freeness conditions for crossed squares and squared complexes, Kluwer Academic Publishers, 20(8), 345 – 368.
  • Norrie, K. (1987). Crossed modules and analogues of groups theorems. Dissertation, King’s College, University of London.
  • Norrie, K. (1990). Actions and automorphisms of crossed modules. Bulletin de la Société Mathématique de France, 118(2), 129 – 146.
  • Orzech, G. (1972a). Obstruction theory in categories. I. Journal of Pure and Applied Algebra, 2, 287 – 314.
  • Orzech, G. (1972b). Obstruction theory in categories. II. Journal of Pure and Applied Algebra, 2, 315 – 340.
  • Porter, T. (1987). Extensions, crossed modules and internal categories in categories of groups with operations. Proceedings of the Edinburgh Mathematical Society, 30, 373 – 381.
  • Porter, T. (1998). Topological quantum field theories from homotopy n-types. Journal of the London Mathematical Society, 58(3), 723 – 732.
  • Şahan, T. (2019). Further remarks on liftings of crossed modules. Hacettepe Journal of Mathematics and Statistics, 48(3), 743 – 752.
  • Şahan, T. ve Mucuk, O. (2020). Normality and quotient in the category of crossed modules within the category of groups with operations. Boletim da Sociedade Paranaense de Matemática, 38(7), 169 – 179.
  • Whitehead, J.H.C. (1946). Note on a previous paper entitled "On adding relations to homotopy groups. Annals of Mathematics, 47(4), 806 – 810.
  • Whitehead, J.H.C. (1948). On operators in relative homotopy groups. Annals of Mathematics, 49, 610 – 640.
  • Whitehead, J.H.C. (1949). Combinatorial homotopy. II. Bulletin of the American Mathematical Society, 55, 213 – 245.
  • Yetter, D.N. (1992). Topological quantum field theories associated to finite groups and crossed G-sets. Journal of Knot Theory and Its Ramifications, 1, 1–20.
  • Yetter, D.N. (1993). TQFT’s from homotopy 2-types. Journal of Knot Theory and Its Ramifications, 2, 113 – 123.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Tunçar Şahan 0000-0002-6552-4695

Emre Kendir This is me 0000-0002-7790-8688

Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date May 26, 2023
Acceptance Date September 8, 2023
Published in Issue Year 2023

Cite

APA Şahan, T., & Kendir, E. (2023). Çaprazlanmış Cat1-Modüller. Journal of the Institute of Science and Technology, 13(4), 2958-2972. https://doi.org/10.21597/jist.1303212
AMA Şahan T, Kendir E. Çaprazlanmış Cat1-Modüller. Iğdır Üniv. Fen Bil Enst. Der. December 2023;13(4):2958-2972. doi:10.21597/jist.1303212
Chicago Şahan, Tunçar, and Emre Kendir. “Çaprazlanmış Cat1-Modüller”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2958-72. https://doi.org/10.21597/jist.1303212.
EndNote Şahan T, Kendir E (December 1, 2023) Çaprazlanmış Cat1-Modüller. Journal of the Institute of Science and Technology 13 4 2958–2972.
IEEE T. Şahan and E. Kendir, “Çaprazlanmış Cat1-Modüller”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 4, pp. 2958–2972, 2023, doi: 10.21597/jist.1303212.
ISNAD Şahan, Tunçar - Kendir, Emre. “Çaprazlanmış Cat1-Modüller”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2958-2972. https://doi.org/10.21597/jist.1303212.
JAMA Şahan T, Kendir E. Çaprazlanmış Cat1-Modüller. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2958–2972.
MLA Şahan, Tunçar and Emre Kendir. “Çaprazlanmış Cat1-Modüller”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2958-72, doi:10.21597/jist.1303212.
Vancouver Şahan T, Kendir E. Çaprazlanmış Cat1-Modüller. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(4):2958-72.