Research Article
BibTex RIS Cite

Nanoakışkanların Isıl Sistemlerde Enerji Verimliliğine Etkisi: Deneysel Verilerin Isıl ve Hidrodinamik Performans Ölçütleri ile Değerlendirilmesi

Year 2023, , 2892 - 2904, 01.12.2023
https://doi.org/10.21597/jist.1303324

Abstract

Sürekli artan enerji maliyetleri nedeniyle, endüstriyel uygulamalarda, ısı değiştiricilerin enerji verimliliği önem kazanmıştır. Bu nedenle, günümüze kadar ısı geçişini iyileştirmek ve süreci hızlandırmak (süreyi kısaltmak), ısı değiştiricilerin boyutunu küçültmek ve enerji (yakıt) verimliliğini artırmak amacıyla çeşitli yöntemler denenmiştir. Son yıllarda, geleneksel aracı sıvıların yerine, bu sıvılara nanometre büyüklüğündeki (en az bir boyutta 100 nm’den küçük) parçacıkların eklenmesiyle elde edilen, nanoakışkan süspansiyonlarının, enerji verimliliğini iyileştirmede kullanılması önerilmektedir. Bu çalışmada nanoakışkanların ısı değiştiricilerde aktarılan ısıl güce ve gerekli pompalama gücüne etkileri, kaynaklardaki deneysel araştırmaların sonuçları kullanılarak incelenmiştir. Aktarılan ısıl güç ve pompalama gücü arasındaki ilişki, iki farklı değerlendirme ölçütü (Performans Değerlendirme Ölçütü-PDÖ ve Verimlilik Değerlendirme Ölçütü-VDÖ) ile tanımlanmıştır. Böylece, ısıl sistemlerde kullanılan geleneksel aracı sıvıların yerine önerilen nanoakışkanların, enerji verimliliğine (enerji tüketimine) etkileri daha gerçekçi bir bakış açısıyla irdelenmiştir. Yapılan değerlendirmelerle, endüstriyel uygulamalarda nanoakışkan kullanmanın, enerji bütçesi bakımından, geleneksel aracı sıvılara göre dezavantajlı olduğu gösterilmiştir. Dolayısıyla nanoakışkanların, bu dezavantajlarının önemsiz olduğu özel uygulamalarda kullanılabileceği sonucu elde edilmiştir

References

  • Alfa Laval. (2022, November 21). Erişim adresi: https://www.alfalaval.my/products/heat- transfer/plate-heat-exchangers/gasketed-plate- and-frame-heat-exchangers/heat-exchanger/how- plate-heat-exchanger-work/. Erişim adresi: 21 11, 2022).
  • Bianco, V., Manca, O., Nardini, S. ve Vafai, K. (2015). Heat Transfer Enhancement with Nanofluids. Boca Raton: CRC Press.
  • Ferrouillat, S., Bontemps, A., Ribeiro, J.-P., Gruss, J.-A., ve Soriano, O. (2011). Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow, 32(2), 424–439. doi: 10.1016/j.ijheatfluidflow.2011.01.003
  • Genceli, O. F. (1999). Isı Değiştiricileri. İstanbul: Birsen Yayınevi.
  • Gürbüz, E. Y., Sözen, A., Variyenli, H. İ., Khanlari, A., ve Tuncer, A. D. (2020). A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 524. doi:10.1007/s40430-020-02601-1
  • Hesselgreaves, J.E., Richard, L., ve Reay, D.A. (2016). Compact Heat Exchangers Selection, Design and Operation (Second). United Kingdom: Butterworth-Heinemann.
  • Kakaç, S., Liu, H., & Pramuanjaroenkij, A. (2012). Heat Exchangers Selection, Rating, and Thermal Design (Third). New York: CRC Press.
  • Karimi, S., Heyhat, M. M., Isfahani, A. H. M., ve Hosseinian, A. (2020). Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger. Heat and Mass Transfer, 56(8), 2325–2331. doi:10.1007/s00231-020-02844-7
  • Klaren Tech. (2022, November 21). Erişim adresi: https://klarenbv.com/heat-exchanger-basics/.(Erişim adresi: 21 11, 2022).
  • Ma, L., Yang, J., Liu, W., ve Zhang, X. (2014). Physical quantity synergy analysis and efficiency evaluation criterion of heat transfer enhancement. International Journal of Thermal Sciences, 80, 23–32. doi: 10.1016/j.ijthermalsci.2014.01.021
  • Pandey, S. D., ve Nema, V. K. (2012). Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science, 38, 248–256. doi: 10.1016/j.expthermflusci.2011.12.013
  • Roy, G., Gherasim, I., Nadeau, F., Poitras, G., ve Nguyen, C. T. (2012). Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows. International Journal of Thermal Sciences, 58, 120-129. doi: 10.1016/j.ijthermalsci.2012.03.009
  • Saleh, B., ve Sundar, L. S. (2021). Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. International Journal of Thermal Sciences, 165, 106935. doi: 10.1016/j.ijthermalsci.2021.106935
  • Serth, R. W. (2014). Process Heat Transfer. Elsevier. doi:10.1016/C2011-0-07242-3
  • Vallejo, J. P., Ansia, L., Calviño, U., Marcos, M. A., Fernández-Seara, J., ve Lugo, L. (2023). Convection behaviour of mono and hybrid nanofluids containing B4C and TiB2 nanoparticles. International Journal of Thermal Sciences, 189, 108268. doi: 10.1016/j.ijthermalsci.2023.108268
  • Webb, R. L. ve Kim, N. H. (2005). Principles of Enhanced Heat Transfer (2nd Ed.). New York: Taylor and Francis.
  • Yang, J., Yang, X., Wang, J., Chin, H. H., ve Sundén, B. (2022). Review on Thermal Performance of Nanofluids With and Without Magnetic Fields in Heat Exchange Devices. Frontiers in Energy Research, 10. doi:10.3389/fenrg.2022.822776
  • Yılmaz, M. S., Ünverdi, M., Kücük, H., Akcakale, N., ve Halıcı, F. (2022). Enhancement of heat transfer in shell and tube heat exchanger using mini-channels and nanofluids: An experimental study. International Journal of Thermal Sciences, 179, 107664. doi: 10.1016/j.ijthermalsci.2022.107664
  • Zhang, Y. (2013). Nanofluids Research, Development and Applications. Columbia: Nova Publishers.

The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria

Year 2023, , 2892 - 2904, 01.12.2023
https://doi.org/10.21597/jist.1303324

Abstract

The energy efficiency of heat exchangers has become crucial in industrial applications due to ever-increasing energy costs. Therefore, various methods have been developed to enhance heat transfer and accelerate the process (shortening the time), reduce the size of heat exchangers, and increase energy (fuel) efficiency. In recent years, researchers have recommended nanofluid suspensions in place of common heat transfer fluids to improve energy efficiency. Nanofluid suspensions are obtained by adding nanometer-sized particles (less than 100 nm in at least one dimension) to heat transfer fluids. This study focused on experimental data in the literature to investigate the effects of nanofluids on transferred thermal power and required pumping power in heat exchangers. The relationship between the transferred thermal power and the pumping power was defined by two different performance criteria (Performance Evaluation Criterion-PEC and Energy Efficiency Criterion-EEC), allowing us to scrutinize the effects of nanofluids in thermal systems on energy efficiency (energy consumption) from a more realistic perspective. The results show that nanofluids are more disadvantageous than conventional heat transfer fluids in terms of the energy budget in industrial applications. It is concluded that nanofluids can be used in special applications where those disadvantages are insignificant.

References

  • Alfa Laval. (2022, November 21). Erişim adresi: https://www.alfalaval.my/products/heat- transfer/plate-heat-exchangers/gasketed-plate- and-frame-heat-exchangers/heat-exchanger/how- plate-heat-exchanger-work/. Erişim adresi: 21 11, 2022).
  • Bianco, V., Manca, O., Nardini, S. ve Vafai, K. (2015). Heat Transfer Enhancement with Nanofluids. Boca Raton: CRC Press.
  • Ferrouillat, S., Bontemps, A., Ribeiro, J.-P., Gruss, J.-A., ve Soriano, O. (2011). Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow, 32(2), 424–439. doi: 10.1016/j.ijheatfluidflow.2011.01.003
  • Genceli, O. F. (1999). Isı Değiştiricileri. İstanbul: Birsen Yayınevi.
  • Gürbüz, E. Y., Sözen, A., Variyenli, H. İ., Khanlari, A., ve Tuncer, A. D. (2020). A comparative study on utilizing hybrid-type nanofluid in plate heat exchangers with different number of plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 524. doi:10.1007/s40430-020-02601-1
  • Hesselgreaves, J.E., Richard, L., ve Reay, D.A. (2016). Compact Heat Exchangers Selection, Design and Operation (Second). United Kingdom: Butterworth-Heinemann.
  • Kakaç, S., Liu, H., & Pramuanjaroenkij, A. (2012). Heat Exchangers Selection, Rating, and Thermal Design (Third). New York: CRC Press.
  • Karimi, S., Heyhat, M. M., Isfahani, A. H. M., ve Hosseinian, A. (2020). Experimental investigation of convective heat transfer and pressure drop of SiC/water nanofluid in a shell and tube heat exchanger. Heat and Mass Transfer, 56(8), 2325–2331. doi:10.1007/s00231-020-02844-7
  • Klaren Tech. (2022, November 21). Erişim adresi: https://klarenbv.com/heat-exchanger-basics/.(Erişim adresi: 21 11, 2022).
  • Ma, L., Yang, J., Liu, W., ve Zhang, X. (2014). Physical quantity synergy analysis and efficiency evaluation criterion of heat transfer enhancement. International Journal of Thermal Sciences, 80, 23–32. doi: 10.1016/j.ijthermalsci.2014.01.021
  • Pandey, S. D., ve Nema, V. K. (2012). Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger. Experimental Thermal and Fluid Science, 38, 248–256. doi: 10.1016/j.expthermflusci.2011.12.013
  • Roy, G., Gherasim, I., Nadeau, F., Poitras, G., ve Nguyen, C. T. (2012). Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows. International Journal of Thermal Sciences, 58, 120-129. doi: 10.1016/j.ijthermalsci.2012.03.009
  • Saleh, B., ve Sundar, L. S. (2021). Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. International Journal of Thermal Sciences, 165, 106935. doi: 10.1016/j.ijthermalsci.2021.106935
  • Serth, R. W. (2014). Process Heat Transfer. Elsevier. doi:10.1016/C2011-0-07242-3
  • Vallejo, J. P., Ansia, L., Calviño, U., Marcos, M. A., Fernández-Seara, J., ve Lugo, L. (2023). Convection behaviour of mono and hybrid nanofluids containing B4C and TiB2 nanoparticles. International Journal of Thermal Sciences, 189, 108268. doi: 10.1016/j.ijthermalsci.2023.108268
  • Webb, R. L. ve Kim, N. H. (2005). Principles of Enhanced Heat Transfer (2nd Ed.). New York: Taylor and Francis.
  • Yang, J., Yang, X., Wang, J., Chin, H. H., ve Sundén, B. (2022). Review on Thermal Performance of Nanofluids With and Without Magnetic Fields in Heat Exchange Devices. Frontiers in Energy Research, 10. doi:10.3389/fenrg.2022.822776
  • Yılmaz, M. S., Ünverdi, M., Kücük, H., Akcakale, N., ve Halıcı, F. (2022). Enhancement of heat transfer in shell and tube heat exchanger using mini-channels and nanofluids: An experimental study. International Journal of Thermal Sciences, 179, 107664. doi: 10.1016/j.ijthermalsci.2022.107664
  • Zhang, Y. (2013). Nanofluids Research, Development and Applications. Columbia: Nova Publishers.
There are 19 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Murat Ünverdi 0000-0002-7045-509X

Hasan Küçük 0000-0002-8825-7315

Mehmet Senan Yılmaz 0000-0001-5644-6675

Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date May 26, 2023
Acceptance Date October 4, 2023
Published in Issue Year 2023

Cite

APA Ünverdi, M., Küçük, H., & Yılmaz, M. S. (2023). The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria. Journal of the Institute of Science and Technology, 13(4), 2892-2904. https://doi.org/10.21597/jist.1303324
AMA Ünverdi M, Küçük H, Yılmaz MS. The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria. Iğdır Üniv. Fen Bil Enst. Der. December 2023;13(4):2892-2904. doi:10.21597/jist.1303324
Chicago Ünverdi, Murat, Hasan Küçük, and Mehmet Senan Yılmaz. “The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data With Thermal and Hydrodynamic Performance Criteria”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2892-2904. https://doi.org/10.21597/jist.1303324.
EndNote Ünverdi M, Küçük H, Yılmaz MS (December 1, 2023) The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria. Journal of the Institute of Science and Technology 13 4 2892–2904.
IEEE M. Ünverdi, H. Küçük, and M. S. Yılmaz, “The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria”, Iğdır Üniv. Fen Bil Enst. Der., vol. 13, no. 4, pp. 2892–2904, 2023, doi: 10.21597/jist.1303324.
ISNAD Ünverdi, Murat et al. “The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data With Thermal and Hydrodynamic Performance Criteria”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2892-2904. https://doi.org/10.21597/jist.1303324.
JAMA Ünverdi M, Küçük H, Yılmaz MS. The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria. Iğdır Üniv. Fen Bil Enst. Der. 2023;13:2892–2904.
MLA Ünverdi, Murat et al. “The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data With Thermal and Hydrodynamic Performance Criteria”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2892-04, doi:10.21597/jist.1303324.
Vancouver Ünverdi M, Küçük H, Yılmaz MS. The Effect of Nanofluids on Energy Efficiency in Thermal Systems: The Evaluation of the Experimental Data with Thermal and Hydrodynamic Performance Criteria. Iğdır Üniv. Fen Bil Enst. Der. 2023;13(4):2892-904.