Research Article
BibTex RIS Cite

Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi

Year 2024, , 312 - 325, 01.03.2024
https://doi.org/10.21597/jist.1322222

Abstract

Bu çalışma, kalkon ve kumarin grupları içeren amino asit konjugatlarının dielektrik özellikleri ve termal kararlılıklarının karşılaştırmalı bir analizini içermektedir. Bu konjugatların elektriksel davranışını incelemek amacıyla dielektrik sabiti, dielektrik kaybı ve AC iletkenliği araştırılırken, termal kararlılıklarını incelemek için termogravimetrik analiz (TGA) kullanılmıştır. Konjugatlar, kalkon veya kumarin yapılarının amino asit omurgalarına klik kimyası ile dahil edilmesiyle sentezlenmiştir. Dielektrik sabiti ölçümleri, kumarin bazlı amino asit konjugatlarının, kumarin sisteminin genişletilmiş π-konjugasyonu ve polarize edilebilirliği nedeniyle kalkon bazlı konjugatlara kıyasla daha yüksek değerler sergilediğini ortaya koymuştur. Dielektrik kayıp analizi, her iki konjugat türünün de yük transfer süreçleri ve moleküler hareketlerle ilişkili kayıplar sergilediğini göstermiştir. TGA ile termal stabilite değerlendirmesi, kalkon içeren konjugatın daha yüksek bozunma sıcaklıkları ile iyi termal stabilite sergilediğini ortaya koymuştur. Yüksek sıcaklıklarda gözlenen ağırlık kaybı, organik bileşenlerin termal bozunmasını göstermiştir. Bu etkili sonuçlar, dielektrik sabiti, dielektrik kaybı ve AC iletkenliği dahil olmak üzere dielektrik özelliklerin yanı sıra kalkon veya kumarin içeren amino asit konjugatlarının termal kararlılığı hakkında değerli bilgiler sağlamaktadır. Bulgular, elektronik cihazlar ve fonksiyonel malzemelerdeki potansiyel uygulamalar için önemli olan elektriksel davranışlarının ve termal özelliklerinin anlaşılmasına katkıda bulunmaktadır..

References

  • Ali, M. K. M., Elzupir, A. O., Ibrahem, M. A., Suliman, I. I., Modwi, A., Idriss, H., & Ibnaouf, K. H. (2017). Characterization of optical and morphological properties of chalcone thin films for optoelectronics applications. Optik, 145, 529-533. doi:https://doi.org/10.1016/j.ijleo.2017.08.044
  • Arifian, H., Maharani, R., Megantara, S., Gazzali, A. M., & Muchtaridi, M. (2022). Amino-Acid-Conjugated Natural Compounds: Aims, Designs and Results. Molecules, 27 (21), 7631.
  • Armaković, S. J., Mary, Y. S., Mary, Y. S., Pelemiš, S., & Armaković, S. (2021). Optoelectronic properties of the newly designed 1,3,5-triazine derivatives with isatin, chalcone and acridone moieties. Computational and Theoretical Chemistry, 1197, 113160. doi:https://doi.org/10.1016/j.comptc.2021.113160
  • Asiri, A. M., Marwani, H. M., Alamry, K. A., Al-Amoudi, M. S., Khan, S. A., & El-Daly, S. A. (2014). Green synthesis, characterization, photophysical and electrochemical properties of bis-chalcones. Int. J. Electrochem. Sci, 9 (2), 799-809.
  • Biryan, F., & Pihtili, G. (2020). Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. Journal of Thermal Analysis and Calorimetry, 139 (6), 3857-3870. doi:10.1007/s10973-019-09243-z
  • Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S., & Lin, W. (2019). Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev, 119 (18), 10403-10519. doi:10.1021/acs.chemrev.9b00145
  • Chen, Y., Wang, S., Pan, F., & Zhang, J. (2014). A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black. Journal of Nanomaterials, 2014, 614797. doi:10.1155/2014/614797
  • Duan, Y.C., Ma, Y.C., Zhang, E., Shi X.J., Wang, M.M. Ye, X.W. Liu, H.M. (2013). Design and synthesis of novel 1, 2, 3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem, 62,11- 19.
  • Çalışkan, E. (2022). Chemoselective Synthesis of Tyrosine-Based Polymers and Comparison of Their Thermal, Kinetic, and Dielectric Properties. ChemistrySelect, 7 (29), e202202010. doi:https://doi.org/10.1002/slct.202202010
  • Çalışkan, E., Biryan, F. & Koran, K. (2021). Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi Journal of the Institute of Science and Technology (11), 2903-2915 doi:https://doi.org/10.21597/jist.910689
  • Çelik, T., & Coşkun, M. F. (2018). Dielectric and thermal properties of the methacrylate polymer bearing chalcone side group. Journal of Molecular Structure, 1157, 239-246.doi:https://doi.org/10.1016/j.molstruc.2017.12.057
  • Feng, S., Gao, Q., Gao, X., Yin, J., & Jiao, Y. (2019). Fluorescent sensor for copper (II) ions based on coumarin derivative and its application in cell imaging. Inorganic Chemistry Communications, 102, 51-56. doi:https://doi.org/10.1016/j.inoche.2019.01.012
  • Ishii, H., Minegishi, M., Lavitpichayawong, B., & Mitani, T. (1995). Synthesis of chitosan-amino acid conjugates and their use in heavy metal uptake. International Journal of Biological Macromolecules, 17 (1), 21-23. doi:https://doi.org/10.1016/0141-8130 (95)93513-W
  • Jain, S., Kumar, S., Lamba, B. Y., Patra, J., & Mahindroo, N. (2021). Nanocatalysts: Applications in synthesis of chalcones – a review. Synthetic Communications, 51 (1), 1-12. doi:10.1080/00397911.2020.1817941
  • Jumal, J., & Sakinah, N. (2021). Synthesis, characterization, and applications of coumarin derivatives: a short review. Malaysian Journal of Science Health & Technology, 7 (1), 62-68.
  • Kagatikar, S., & Sunil, D. (2021). Aggregation induced emission of chalcones. Chemical Papers, 75 (12), 6147-6156. doi:10.1007/s11696-021-01793-7
  • Karthikeyan, C., S. H. Narayana Moorthy, N., Ramasamy, S., Vanam, U., Manivannan, E., Karunagaran, D., & Trivedi, P. (2015). Advances in Chalcones with Anticancer Activities. Recent Patents on Anti-Cancer Drug Discovery, 10 (1), 97-115.
  • Koran, K., Özen, F., Biryan, F., Demirelli, K., & Görgülü, A. O. (2016). Eu+3-doped chalcone substituted cyclotriphosphazenes: Synthesis, characterizations, thermal and dielectrical properties. Inorganica Chimica Acta, 450, 162-169. doi:https://doi.org/10.1016/j.ica.2016.05.043
  • Koran, K., Özen, F., Biryan, F., & Görgülü, A. O. (2016). Synthesis, structural characterization and dielectric behavior of new oxime-cyclotriphosphazene derivatives. Journal of Molecular Structure, 1105, 135-141. doi:https://doi.org/10.1016/j.molstruc.2015.10.048
  • Koran, K., Özen, F., Torğut, G., Pıhtılı, G., Çil, E., Orhan Görgülü, A., & Arslan, M. (2014). Synthesis, characterization and dielectric properties of phosphazenes containing chalcones. Polyhedron, 79, 213-220. doi:https://doi.org/10.1016/j.poly.2014.04.070
  • Kumar, A., Baccoli, R., Fais, A., Cincotti, A., Pilia, L., & Gatto, G. (2019). Substitution effects on the optoelectronic properties of coumarin derivatives. Applied Sciences, 10 (1), 144.
  • Kurt, A. (2017). Kumarin Yan Grup İçeren Poli (3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği Journal of the Institute of Science and Technology, 7 (4), 113-121
  • Kurt, A., Ayhan, A. F. & Koca, M. (2018). Synthesis and Characterization of Coumarin Derived Copolymers. Sakarya University Journal of Science, 22, 880-887. doi:https://doi.org/10.16984/saufenbilder.322354
  • Li, Y., Cordovez, M., & Karbhari, V. M. (2003). Dielectric and mechanical characterization of processing and moisture uptake effects in E-glass/epoxy composites. Composites Part B: Engineering, 34 (4), 383-390. doi:https://doi.org/10.1016/S1359-8368 (02)00133-6
  • Lin, X., Fang, Z., Zeng, C., Zhu, C., Pang, X., Liu, C., . . . Guo, K. (2020). Continuous Electrochemical Synthesis of Iso-Coumarin Derivatives from o- (1-Alkynyl) Benzoates under Metal- and Oxidant-Free. Chemistry – A European Journal, 26 (60), 13738-13742. doi:https://doi.org/10.1002/chem.202001766
  • Mukhtar, A., Mansha, A., Asim, S., Shahzad, A., & Bibi, S. (2022). Excited State Complexes of Coumarin Derivatives. Journal of Fluorescence, 32 (1), 1-17. doi:10.1007/s10895-021-02807-z
  • Muller, T. J., Conradie, J., & Erasmus, E. (2012). A spectroscopic, electrochemical and DFT study of para-substituted ferrocene-containing chalcone derivatives: Structure of FcCOCHCH (p-tBuC6H4). Polyhedron, 33 (1), 257-266.
  • Niu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G., & Li, Z.-W. (2006). Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 577 (2), 264-270. doi:https://doi.org/10.1016/j.aca.2006.06.046
  • Parvathy, K. S., Negi, P. S., & Srinivas, P. (2010). Curcumin–amino acid conjugates: Synthesis, antioxidant and antimutagenic attributes. Food Chemistry, 120 (2), 523-530. doi:https://doi.org/10.1016/j.foodchem.2009.10.047
  • Penta, S. (2015). Advances in structure and activity relationship of coumarin derivatives: Academic Press. Serra, V. V., Zamarrón, A., Faustino, M. A. F., Cruz, M. C. I.-d. l., Blázquez, A., Rodrigues, J. M. M., . . . Sanz-Rodríguez, F. (2010). New porphyrin amino acid conjugates: Synthesis and photodynamic effect in human epithelial cells. Bioorganic & Medicinal Chemistry, 18 (16), 6170-6178. doi:https://doi.org/10.1016/j.bmc.2010.06.030
  • Singla, P., & Salunke, D. B. (2020). Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. European Journal of Medicinal Chemistry, 187, 111909. doi:https://doi.org/10.1016/j.ejmech.2019.111909
  • Tabti, S., Djedouani, A., Aggoun, D., Warad, I., Rahmouni, S., Romdhane, S., & Fouzi, H. (2018). New Cu (II), Co (II) and Ni (II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies. Journal of Molecular Structure, 1155, 11-20. doi:https://doi.org/10.1016/j.molstruc.2017.10.084
  • Urbańska, K., & Pawlicki, M. (2020). Porphyrin–Amino Acid Conjugates. J Org Chem, 85 (12), 8196-8202. doi:10.1021/acs.joc.0c00335
  • Yan, M., Xin, J., Fan, L., Ye, J., Xiao, T., Huang, J., & Yang, X. (2021). Electrochemistry and Electrochemiluminescence of Coumarin Derivative Microrods: Mechanism Insights. Analytical Chemistry, 93 (7), 3461-3469. doi:10.1021/acs.analchem.0c04783
  • Zarghi, A., Zebardast, T., Hakimion, F., Shirazi, F. H., Praveen Rao, P. N., & Knaus, E. E. (2006). Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorganic & Medicinal Chemistry, 14 (20), 7044-7050. doi:https://doi.org/10.1016/j.bmc.2006.06.022

Synthesis, Characterization, Thermal and Dielectric Properties of Amino Acid-Centered Coumarin and Chalcone Hybrid Structures Via Click Reaction

Year 2024, , 312 - 325, 01.03.2024
https://doi.org/10.21597/jist.1322222

Abstract

This work includes a comparative analysis of the dielectric properties and thermal stability of amino acid conjugates containing chalcone and coumarin groups. Dielectric constant, dielectric loss and AC conductivity were investigated to study the electrical behavior of these conjugates, while thermogravimetric analysis (TGA) was used to study their thermal stability. The conjugates were synthesized via click chemistry by incorporating chalcone or coumarin structures into amino acid backbones. Dielectric constant measurements showed that coumarin-based amino acid conjugates exhibited higher values compared to chalcone-based conjugates due to the extended π-conjugation and polarizability of the coumarin system. Dielectric loss analysis showed that both types of conjugates exhibited losses associated with charge transfer processes and molecular motions. Thermal stability assessment by TGA revealed that the chalcone-containing conjugate showed good thermal stability with higher decomposition temperatures. The weight loss observed at high temperatures indicated thermal degradation of the organic components. These effective results provide valuable insights into the dielectric properties, including dielectric constant, dielectric loss and AC conductivity, as well as the thermal stability of amino acid conjugates containing chalcone or coumarin. The results contribute to understanding their electrical behavior and thermal properties, which are important for potential applications in electronic devices and functional materials.

References

  • Ali, M. K. M., Elzupir, A. O., Ibrahem, M. A., Suliman, I. I., Modwi, A., Idriss, H., & Ibnaouf, K. H. (2017). Characterization of optical and morphological properties of chalcone thin films for optoelectronics applications. Optik, 145, 529-533. doi:https://doi.org/10.1016/j.ijleo.2017.08.044
  • Arifian, H., Maharani, R., Megantara, S., Gazzali, A. M., & Muchtaridi, M. (2022). Amino-Acid-Conjugated Natural Compounds: Aims, Designs and Results. Molecules, 27 (21), 7631.
  • Armaković, S. J., Mary, Y. S., Mary, Y. S., Pelemiš, S., & Armaković, S. (2021). Optoelectronic properties of the newly designed 1,3,5-triazine derivatives with isatin, chalcone and acridone moieties. Computational and Theoretical Chemistry, 1197, 113160. doi:https://doi.org/10.1016/j.comptc.2021.113160
  • Asiri, A. M., Marwani, H. M., Alamry, K. A., Al-Amoudi, M. S., Khan, S. A., & El-Daly, S. A. (2014). Green synthesis, characterization, photophysical and electrochemical properties of bis-chalcones. Int. J. Electrochem. Sci, 9 (2), 799-809.
  • Biryan, F., & Pihtili, G. (2020). Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. Journal of Thermal Analysis and Calorimetry, 139 (6), 3857-3870. doi:10.1007/s10973-019-09243-z
  • Cao, D., Liu, Z., Verwilst, P., Koo, S., Jangjili, P., Kim, J. S., & Lin, W. (2019). Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem Rev, 119 (18), 10403-10519. doi:10.1021/acs.chemrev.9b00145
  • Chen, Y., Wang, S., Pan, F., & Zhang, J. (2014). A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black. Journal of Nanomaterials, 2014, 614797. doi:10.1155/2014/614797
  • Duan, Y.C., Ma, Y.C., Zhang, E., Shi X.J., Wang, M.M. Ye, X.W. Liu, H.M. (2013). Design and synthesis of novel 1, 2, 3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem, 62,11- 19.
  • Çalışkan, E. (2022). Chemoselective Synthesis of Tyrosine-Based Polymers and Comparison of Their Thermal, Kinetic, and Dielectric Properties. ChemistrySelect, 7 (29), e202202010. doi:https://doi.org/10.1002/slct.202202010
  • Çalışkan, E., Biryan, F. & Koran, K. (2021). Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi Journal of the Institute of Science and Technology (11), 2903-2915 doi:https://doi.org/10.21597/jist.910689
  • Çelik, T., & Coşkun, M. F. (2018). Dielectric and thermal properties of the methacrylate polymer bearing chalcone side group. Journal of Molecular Structure, 1157, 239-246.doi:https://doi.org/10.1016/j.molstruc.2017.12.057
  • Feng, S., Gao, Q., Gao, X., Yin, J., & Jiao, Y. (2019). Fluorescent sensor for copper (II) ions based on coumarin derivative and its application in cell imaging. Inorganic Chemistry Communications, 102, 51-56. doi:https://doi.org/10.1016/j.inoche.2019.01.012
  • Ishii, H., Minegishi, M., Lavitpichayawong, B., & Mitani, T. (1995). Synthesis of chitosan-amino acid conjugates and their use in heavy metal uptake. International Journal of Biological Macromolecules, 17 (1), 21-23. doi:https://doi.org/10.1016/0141-8130 (95)93513-W
  • Jain, S., Kumar, S., Lamba, B. Y., Patra, J., & Mahindroo, N. (2021). Nanocatalysts: Applications in synthesis of chalcones – a review. Synthetic Communications, 51 (1), 1-12. doi:10.1080/00397911.2020.1817941
  • Jumal, J., & Sakinah, N. (2021). Synthesis, characterization, and applications of coumarin derivatives: a short review. Malaysian Journal of Science Health & Technology, 7 (1), 62-68.
  • Kagatikar, S., & Sunil, D. (2021). Aggregation induced emission of chalcones. Chemical Papers, 75 (12), 6147-6156. doi:10.1007/s11696-021-01793-7
  • Karthikeyan, C., S. H. Narayana Moorthy, N., Ramasamy, S., Vanam, U., Manivannan, E., Karunagaran, D., & Trivedi, P. (2015). Advances in Chalcones with Anticancer Activities. Recent Patents on Anti-Cancer Drug Discovery, 10 (1), 97-115.
  • Koran, K., Özen, F., Biryan, F., Demirelli, K., & Görgülü, A. O. (2016). Eu+3-doped chalcone substituted cyclotriphosphazenes: Synthesis, characterizations, thermal and dielectrical properties. Inorganica Chimica Acta, 450, 162-169. doi:https://doi.org/10.1016/j.ica.2016.05.043
  • Koran, K., Özen, F., Biryan, F., & Görgülü, A. O. (2016). Synthesis, structural characterization and dielectric behavior of new oxime-cyclotriphosphazene derivatives. Journal of Molecular Structure, 1105, 135-141. doi:https://doi.org/10.1016/j.molstruc.2015.10.048
  • Koran, K., Özen, F., Torğut, G., Pıhtılı, G., Çil, E., Orhan Görgülü, A., & Arslan, M. (2014). Synthesis, characterization and dielectric properties of phosphazenes containing chalcones. Polyhedron, 79, 213-220. doi:https://doi.org/10.1016/j.poly.2014.04.070
  • Kumar, A., Baccoli, R., Fais, A., Cincotti, A., Pilia, L., & Gatto, G. (2019). Substitution effects on the optoelectronic properties of coumarin derivatives. Applied Sciences, 10 (1), 144.
  • Kurt, A. (2017). Kumarin Yan Grup İçeren Poli (3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği Journal of the Institute of Science and Technology, 7 (4), 113-121
  • Kurt, A., Ayhan, A. F. & Koca, M. (2018). Synthesis and Characterization of Coumarin Derived Copolymers. Sakarya University Journal of Science, 22, 880-887. doi:https://doi.org/10.16984/saufenbilder.322354
  • Li, Y., Cordovez, M., & Karbhari, V. M. (2003). Dielectric and mechanical characterization of processing and moisture uptake effects in E-glass/epoxy composites. Composites Part B: Engineering, 34 (4), 383-390. doi:https://doi.org/10.1016/S1359-8368 (02)00133-6
  • Lin, X., Fang, Z., Zeng, C., Zhu, C., Pang, X., Liu, C., . . . Guo, K. (2020). Continuous Electrochemical Synthesis of Iso-Coumarin Derivatives from o- (1-Alkynyl) Benzoates under Metal- and Oxidant-Free. Chemistry – A European Journal, 26 (60), 13738-13742. doi:https://doi.org/10.1002/chem.202001766
  • Mukhtar, A., Mansha, A., Asim, S., Shahzad, A., & Bibi, S. (2022). Excited State Complexes of Coumarin Derivatives. Journal of Fluorescence, 32 (1), 1-17. doi:10.1007/s10895-021-02807-z
  • Muller, T. J., Conradie, J., & Erasmus, E. (2012). A spectroscopic, electrochemical and DFT study of para-substituted ferrocene-containing chalcone derivatives: Structure of FcCOCHCH (p-tBuC6H4). Polyhedron, 33 (1), 257-266.
  • Niu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G., & Li, Z.-W. (2006). Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 577 (2), 264-270. doi:https://doi.org/10.1016/j.aca.2006.06.046
  • Parvathy, K. S., Negi, P. S., & Srinivas, P. (2010). Curcumin–amino acid conjugates: Synthesis, antioxidant and antimutagenic attributes. Food Chemistry, 120 (2), 523-530. doi:https://doi.org/10.1016/j.foodchem.2009.10.047
  • Penta, S. (2015). Advances in structure and activity relationship of coumarin derivatives: Academic Press. Serra, V. V., Zamarrón, A., Faustino, M. A. F., Cruz, M. C. I.-d. l., Blázquez, A., Rodrigues, J. M. M., . . . Sanz-Rodríguez, F. (2010). New porphyrin amino acid conjugates: Synthesis and photodynamic effect in human epithelial cells. Bioorganic & Medicinal Chemistry, 18 (16), 6170-6178. doi:https://doi.org/10.1016/j.bmc.2010.06.030
  • Singla, P., & Salunke, D. B. (2020). Recent advances in steroid amino acid conjugates: Old scaffolds with new dimensions. European Journal of Medicinal Chemistry, 187, 111909. doi:https://doi.org/10.1016/j.ejmech.2019.111909
  • Tabti, S., Djedouani, A., Aggoun, D., Warad, I., Rahmouni, S., Romdhane, S., & Fouzi, H. (2018). New Cu (II), Co (II) and Ni (II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies. Journal of Molecular Structure, 1155, 11-20. doi:https://doi.org/10.1016/j.molstruc.2017.10.084
  • Urbańska, K., & Pawlicki, M. (2020). Porphyrin–Amino Acid Conjugates. J Org Chem, 85 (12), 8196-8202. doi:10.1021/acs.joc.0c00335
  • Yan, M., Xin, J., Fan, L., Ye, J., Xiao, T., Huang, J., & Yang, X. (2021). Electrochemistry and Electrochemiluminescence of Coumarin Derivative Microrods: Mechanism Insights. Analytical Chemistry, 93 (7), 3461-3469. doi:10.1021/acs.analchem.0c04783
  • Zarghi, A., Zebardast, T., Hakimion, F., Shirazi, F. H., Praveen Rao, P. N., & Knaus, E. E. (2006). Synthesis and biological evaluation of 1,3-diphenylprop-2-en-1-ones possessing a methanesulfonamido or an azido pharmacophore as cyclooxygenase-1/-2 inhibitors. Bioorganic & Medicinal Chemistry, 14 (20), 7044-7050. doi:https://doi.org/10.1016/j.bmc.2006.06.022
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Physical Organic Chemistry
Journal Section Kimya / Chemistry
Authors

Fatih Biryan 0000-0001-9198-3329

Eray Çalışkan 0000-0003-2399-4100

Kenan Koran 0000-0002-2218-7211

Early Pub Date February 20, 2024
Publication Date March 1, 2024
Submission Date July 4, 2023
Acceptance Date October 24, 2023
Published in Issue Year 2024

Cite

APA Biryan, F., Çalışkan, E., & Koran, K. (2024). Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 14(1), 312-325. https://doi.org/10.21597/jist.1322222
AMA Biryan F, Çalışkan E, Koran K. Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. March 2024;14(1):312-325. doi:10.21597/jist.1322222
Chicago Biryan, Fatih, Eray Çalışkan, and Kenan Koran. “Amino Asit Merkezli Kumarin Ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu Ile Sentezi, Karakterizasyonu, Termal Ve Dielektrik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 14, no. 1 (March 2024): 312-25. https://doi.org/10.21597/jist.1322222.
EndNote Biryan F, Çalışkan E, Koran K (March 1, 2024) Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 14 1 312–325.
IEEE F. Biryan, E. Çalışkan, and K. Koran, “Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 14, no. 1, pp. 312–325, 2024, doi: 10.21597/jist.1322222.
ISNAD Biryan, Fatih et al. “Amino Asit Merkezli Kumarin Ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu Ile Sentezi, Karakterizasyonu, Termal Ve Dielektrik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 14/1 (March 2024), 312-325. https://doi.org/10.21597/jist.1322222.
JAMA Biryan F, Çalışkan E, Koran K. Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14:312–325.
MLA Biryan, Fatih et al. “Amino Asit Merkezli Kumarin Ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu Ile Sentezi, Karakterizasyonu, Termal Ve Dielektrik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 14, no. 1, 2024, pp. 312-25, doi:10.21597/jist.1322222.
Vancouver Biryan F, Çalışkan E, Koran K. Amino Asit Merkezli Kumarin ve Kalkon Grupları İçeren Hibrit Yapılarının Klik Reaksiyonu ile Sentezi, Karakterizasyonu, Termal ve Dielektrik Özelliklerinin İncelenmesi. Iğdır Üniv. Fen Bil Enst. Der. 2024;14(1):312-25.