Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 2, 372 - 381, 01.06.2025
https://doi.org/10.21597/jist.1579784

Abstract

References

  • Ayan, E., Bayraktar, Y., Celik, C., & Ayhan, B. (2024). Dental student application of artificial intelligence technology in detecting proximal caries lesions. J Dent Educ, 88(4), 490-500. doi:10.1002/jdd.13437
  • Bayraktar, Y., & Ayan, E. (2022). Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin Oral Investig, 26(1), 623-632. doi:10.1007/s00784-021-04040-1
  • Bilgir, E., Bayrakdar, I. S., Celik, O., Orhan, K., Akkoca, F., Saglam, H., . . . Rozylo-Kalinowska, I. (2021). An artificial intelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med Imaging, 21(1), 124. doi:10.1186/s12880-021-00656-7
  • Carrillo-Perez, F., Pecho, O. E., Morales, J. C., Paravina, R. D., Della Bona, A., Ghinea, R., . . . Herrera, L. J. (2022). Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet Restor Dent, 34(1), 259-280. doi:10.1111/jerd.12844
  • Chai, J., Zeng, H., Li, A., & Ngai, E. W. (2021). Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6, 100134.
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Corbella, S., Srinivas, S., & Cabitza, F. (2021). Applications of deep learning in dentistry. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 132(2), 225-238.
  • Çelik, M., & İnik, Ö. (2023). Detection of monkeypox among different pox diseases with different pre-trained deep learning models. Journal of the Institute of Science and Technology, 13(1), 10-21.
  • El-Kishawi, M., Khalaf, K., Al-Najjar, D., Seraj, Z., & Al Kawas, S. (2020). Rethinking Assessment Concepts in Dental Education. Int J Dent, 2020, 8672303. doi:10.1155/2020/8672303
  • Fukushima, K., & Miyake, S. (1982). Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition, Berlin, Heidelberg.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Hubel, D. H., & Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol, 28(6), 1041-1059. doi:10.1152/jn.1965.28.6.1041
  • Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointest Endosc, 92(4), 807-812. doi:10.1016/j.gie.2020.06.040
  • Keser, G., Bayrakdar, I. S., Pekiner, F. N., Celik, O., & Orhan, K. (2023). A deep learning algorithm for classification of oral lichen planus lesions from photographic images: A retrospective study. J Stomatol Oral Maxillofac Surg, 124(1), 101264. doi:10.1016/j.jormas.2022.08.007
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Sapci, A. H., & Sapci, H. A. (2020). Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review. JMIR Med Educ, 6(1), e19285. doi:10.2196/19285
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. Paper presented at the Proceedings of the IEEE international conference on computer vision.
  • Shan, T., Tay, F. R., & Gu, L. (2021). Application of Artificial Intelligence in Dentistry. J Dent Res, 100(3), 232-244. doi:10.1177/0022034520969115
  • Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 35(5), 1285-1298.
  • Skinner, D. E., Saylors, C. P., Boone, E. L., Rye, K. J., Berry, K. S., & Kennedy, R. L. (2015). Becoming Lifelong Learners: A Study in Self-Regulated Learning. J Allied Health, 44(3), 177-182.
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Paper presented at the Proceedings of the AAAI conference on artificial intelligence.
  • Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for Computer Vision: A Brief Review. Comput Intell Neurosci, 2018, 7068349. doi:10.1155/2018/7068349
  • Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Zou, H., Jin, S., Sun, J., & Dai, Y. (2016). A Cavity Preparation Evaluation System in the Skill Assessment of Dental Students. J Dent Educ, 80(8), 930-937.

Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence

Year 2025, Volume: 15 Issue: 2, 372 - 381, 01.06.2025
https://doi.org/10.21597/jist.1579784

Abstract

In dental education, it is important for instructors to objectively evaluate the cavities prepared by students on mannequin teeth. However, this evaluation process is difficult due to factors such as physical fatigue and eye strain, which can compromise the quality of feedback. Therefore, interest in computer-aided systems that provide objective evaluations is increasing. The rapid advancements in artificial intelligence, particularly deep learning, have shown promise in various fields, including medicine and dentistry. Convolutional neural networks (CNNs), inspired by the mammalian visual system, perform in tasks such as classification and object detection within computer vision. Despite its potential, there is no research on the use of CNN to evaluate cavities. This study aimed to explore the feasibility of using CNNs to classify cavities into narrow, normal width, or wide categories based on photographs. Ten different CNN models were used to classify them. Additionally, the decision-making processes of these models were visualized through heat maps, offering insights into their predictions. According to the test results, the highest accuracy, precision and recall values were found for DenseNet-169 (98.85%, 98.61%, 99.10%). This study can be conceivable for future research in automating cavity evaluations in dental education, enhancing objectivity, and enabling self-assessment for students.

References

  • Ayan, E., Bayraktar, Y., Celik, C., & Ayhan, B. (2024). Dental student application of artificial intelligence technology in detecting proximal caries lesions. J Dent Educ, 88(4), 490-500. doi:10.1002/jdd.13437
  • Bayraktar, Y., & Ayan, E. (2022). Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin Oral Investig, 26(1), 623-632. doi:10.1007/s00784-021-04040-1
  • Bilgir, E., Bayrakdar, I. S., Celik, O., Orhan, K., Akkoca, F., Saglam, H., . . . Rozylo-Kalinowska, I. (2021). An artificial intelligence approach to automatic tooth detection and numbering in panoramic radiographs. BMC Med Imaging, 21(1), 124. doi:10.1186/s12880-021-00656-7
  • Carrillo-Perez, F., Pecho, O. E., Morales, J. C., Paravina, R. D., Della Bona, A., Ghinea, R., . . . Herrera, L. J. (2022). Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet Restor Dent, 34(1), 259-280. doi:10.1111/jerd.12844
  • Chai, J., Zeng, H., Li, A., & Ngai, E. W. (2021). Deep learning in computer vision: A critical review of emerging techniques and application scenarios. Machine Learning with Applications, 6, 100134.
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Corbella, S., Srinivas, S., & Cabitza, F. (2021). Applications of deep learning in dentistry. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 132(2), 225-238.
  • Çelik, M., & İnik, Ö. (2023). Detection of monkeypox among different pox diseases with different pre-trained deep learning models. Journal of the Institute of Science and Technology, 13(1), 10-21.
  • El-Kishawi, M., Khalaf, K., Al-Najjar, D., Seraj, Z., & Al Kawas, S. (2020). Rethinking Assessment Concepts in Dental Education. Int J Dent, 2020, 8672303. doi:10.1155/2020/8672303
  • Fukushima, K., & Miyake, S. (1982). Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition, Berlin, Heidelberg.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Hubel, D. H., & Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol, 28(6), 1041-1059. doi:10.1152/jn.1965.28.6.1041
  • Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointest Endosc, 92(4), 807-812. doi:10.1016/j.gie.2020.06.040
  • Keser, G., Bayrakdar, I. S., Pekiner, F. N., Celik, O., & Orhan, K. (2023). A deep learning algorithm for classification of oral lichen planus lesions from photographic images: A retrospective study. J Stomatol Oral Maxillofac Surg, 124(1), 101264. doi:10.1016/j.jormas.2022.08.007
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Sapci, A. H., & Sapci, H. A. (2020). Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review. JMIR Med Educ, 6(1), e19285. doi:10.2196/19285
  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. Paper presented at the Proceedings of the IEEE international conference on computer vision.
  • Shan, T., Tay, F. R., & Gu, L. (2021). Application of Artificial Intelligence in Dentistry. J Dent Res, 100(3), 232-244. doi:10.1177/0022034520969115
  • Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 35(5), 1285-1298.
  • Skinner, D. E., Saylors, C. P., Boone, E. L., Rye, K. J., Berry, K. S., & Kennedy, R. L. (2015). Becoming Lifelong Learners: A Study in Self-Regulated Learning. J Allied Health, 44(3), 177-182.
  • Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Paper presented at the Proceedings of the AAAI conference on artificial intelligence.
  • Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep Learning for Computer Vision: A Brief Review. Comput Intell Neurosci, 2018, 7068349. doi:10.1155/2018/7068349
  • Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
  • Zou, H., Jin, S., Sun, J., & Dai, Y. (2016). A Cavity Preparation Evaluation System in the Skill Assessment of Dental Students. J Dent Educ, 80(8), 930-937.
There are 26 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Bilgisayar Mühendisliği / Computer Engineering
Authors

Yusuf Bayraktar 0000-0001-6250-5651

Enes Ayan 0000-0002-5463-8064

Baturalp Ayhan 0000-0002-7488-895X

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date November 5, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Bayraktar, Y., Ayan, E., & Ayhan, B. (2025). Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence. Journal of the Institute of Science and Technology, 15(2), 372-381. https://doi.org/10.21597/jist.1579784
AMA Bayraktar Y, Ayan E, Ayhan B. Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence. J. Inst. Sci. and Tech. June 2025;15(2):372-381. doi:10.21597/jist.1579784
Chicago Bayraktar, Yusuf, Enes Ayan, and Baturalp Ayhan. “Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 372-81. https://doi.org/10.21597/jist.1579784.
EndNote Bayraktar Y, Ayan E, Ayhan B (June 1, 2025) Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence. Journal of the Institute of Science and Technology 15 2 372–381.
IEEE Y. Bayraktar, E. Ayan, and B. Ayhan, “Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 372–381, 2025, doi: 10.21597/jist.1579784.
ISNAD Bayraktar, Yusuf et al. “Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence”. Journal of the Institute of Science and Technology 15/2 (June2025), 372-381. https://doi.org/10.21597/jist.1579784.
JAMA Bayraktar Y, Ayan E, Ayhan B. Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence. J. Inst. Sci. and Tech. 2025;15:372–381.
MLA Bayraktar, Yusuf et al. “Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 372-81, doi:10.21597/jist.1579784.
Vancouver Bayraktar Y, Ayan E, Ayhan B. Dental Cavity Analysis in Restorative Dentistry Using Deep Learning and Explainable Artificial Intelligence. J. Inst. Sci. and Tech. 2025;15(2):372-81.