Research Article
BibTex RIS Cite

Effect of Glucose Fatty Acid Esters on the Thermal Degradation of Vegetable Based Edible Oils

Year 2018, , 171 - 179, 30.12.2018
https://doi.org/10.21597/jist.411739

Abstract

The study presents the results on the thermal stability of the sunflower, corn and olive oil with

addition of standard antioxidants and glucose fatty acid esters under accelerated storage test at 60°C for 15 days.

During the work, glucose oleate and glucose laurate were synthesized and characterized. Fatty acid compositions of

olive, sunflower and corn oil were determined by using GC and in all samples peroxide value, free fatty acid value

and phenolic content are specified. High oleic acid content increased the thermal degradation in edible oils. Glucose

oleate and glucose laurate acted as a thermal oxidation suppressor for the vegetable based edible oils and glucose

oleate showed better antioxidant properties than glucose laurate for all types of oils.

References

  • Addis P B, Warner G J, 1991. In Free Radicals and Food Additives, eds 0. I. Aruoma & B. Halliwell. Taylor and Francis Ltd, London, 77.
  • Akin M, Arabaci G, Saki N, 2013. Total phenols, antioxidant potential and tyrosinase inhibitory activity of walnut (Juglans regia L.) leaf, husk and seed. Asian Journal of Chemistry, 25(16); 9337-9340.
  • Allen DK, Tao BY, 2002. Synthesis and Characterization of Maltose Fatty Acid Monoesters as Biosurfactants. Journal of surfactants and detergents, 5: 245-255.
  • AOCS (1993), Official Methods and Recommended Practices of the American Oil Chemists’ Society, American Oil Chemists Society, Chicago, IL.
  • Aoshima H, Miyagisnima A, Nozawa Y, Sadzuka Y, Sonobe T, 2005. Glycerin fatty acid esters as a new lubricant of tablets. International Journal of Pharmaceutics, 293: 25-34.
  • Awasthi SK, 2000. Definition of standards of quality. In J. P. Bhatnagar (Ed.), Book prevention of food adulteration act with rules (3rd ed., pp. 699-700). New Delhi, India: Ashoka Law House, 707.
  • Choe YO, Min DB, 2005. Chemistry and reactions of reactive oxygen species in foods. Journal of Food Science, 70(9): 142-159.
  • Erickson SK, Matsui SM, Strewsbury MA, Coopre AD, Gordon R, 1978. Effects of 25- hydroxycholesterol and rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in vivo in perfused liver and hepatocytes. J. Biol. Chem, 253: 4159-4164.
  • Frankel EN, 1993. In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends in Food Sci. Technol., 4: 220–225.
  • Furukawa S, Akiyoshi K, O’Tool GA, Ogihara G, Morinaga Y, 2010. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. International Journal of Food Microbiology, 138: 176-180.
  • Ghafoorunissa SH, 2007. Sesame lignans enhance the thermal stability of edible vegetable oils. Food chemistry, 105: 1076-1085.
  • Gunstone FD, 2000. Composition and properties of edible oils, in Edible Oil Processing (eds W. Hamm and R.J. Hamilton). Sheffield Academic Press, Sheffield, 1-33.
  • Hemalatha S, Ghafoorunissa, 2007. Sesame lignans enhance the termel stability of edible vegitable oils. Food Chemistry, 105: 1076-1085.
  • Kaitaranta JK, 1992. Control of lipid oxidation in fish oil with various anti-oxidative compounds. Journal of American Chemical Society, 69: 810-813.
  • Kays S, Teng Q, 1997. Characterization of Insecticidal Sugar Esters of Petunia. J. Agric. Food Chem, 45: 270-275.
  • Koski A, Pekkarinen S, Hopia Anu, Wahala K, Heinonen M, 2003. Precessing of rapeseed oil: effects on sinapic acid derivative content and oxidative stability. Eur. Food. Res. Technol., 217: 110-114.
  • Lee J, Chung H, Chang P, Lee J, 2007. Development of a method the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Food Chemistry, 103: 662-669.
  • Li Lu, Ji F, Wang J, Li Y, Bao Y, 2015. Esterification degree of fructose laurate exerted by Candida antarcticalipase B in organic solvents. Enzyme and Microbial Technology, 69: 46-53.
  • Maranesi M, Bochicchio D, Montellato L, Zaghini A, Pagliuca G, Badiani A, 2005. Effect of microwave cooking or broiling on selected nutrient contents, fatty acid patterns and true retention values in separable lean from lamb rib-loins, with emphasis on conjugated linoleic acid. Food Chemistry, 90: 207-218.
  • Molkentin J, 2009. Authentication of organic milk using d13C and the a-linolenic acid content of milk fat. Journal of Agricultural and Food Chemistry, 57: 785–790.
  • Rosa PM, Antoniassi R, Freitas SC, Bizzo HR, Zanotto DL, Oliveira MF, Castiglioni VBR, 2009. Chemical composition of Brazilian sunflower varieties. Helia, 32(50): 145-156.
  • Sakouhi F, Absalon C, Flamini G, Cioni PL, Kallel H, Boukhchina S, 2010. Lipid components of olive oil from Tunisian Cv. Sayali: Characterization and authenticity. ticity. Comptes Rendus Biologies. 333: 642-648.
  • Silva AC, Jorge N, 2012. Oxidative stability of soybean oil added to Lentinus edodes and Agaricus blazei mushromms extracts in an accelerated storage test. Nutrition& Food Science, 42: 34-40.
  • Simic MG, Karel M, 1980. Autoxidation in Food and Biological Systems. Eds. Plenum Press, New York (USA).
  • St. Angelo AJ, 1992. Lipid Oxidation in Food. ACS Symposium Series, No 500, Ed. American Chemical Society, Washington (USA).
  • Tan CP, Che Man Y B, Selamat J, Yusoff MSA, 2002. Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chemistry, 76: 385-389.
  • Von der Haar D, Stabler A, Wichmann R, Schwiggert-Weisz U, 2015. Enzymatic esterification of free fatty acid in vegetable oils utilizing different immobilized lipases, Biotechnol. Lett., 37: 169-174.
  • Yanishlieva NV, Marinova EM, 2001. Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol., 103: 752-767.
  • Zeb A, Murkovic M, 2013. Pro-oxidant effects of b-carotene during thermal oxidation of edible oils. J. Am. Oil Chem. Soc., 90: 881-889.
  • Zhang Y, Yang L, Zu Y, Chen X, Wang F, Liu F, 2010. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chemistry, 118(3); 656-662.
  • Zhao L, Zhang H, Hao T, Li S, 2015. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food chemistry, 187: 370-377.

Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi

Year 2018, , 171 - 179, 30.12.2018
https://doi.org/10.21597/jist.411739

Abstract

Çalışma, 15 gün boyunca 60°C’de hızlandırılmış depolama testi altında standart antioksidanlar ve glukoz

yağ asidi esterleri eklenmesinin ayçiçeği, mısır ve zeytinyağının termal stabilitelerini nasıl etkilediğiyle ilgili

sonuçları sunmaktadır. Çalışmada glikoz oleat ve glikoz laurat sentezlenerek karakterize edildi. Zeytin, ayçiçek ve

mısır yağının yağ asidi bileşenleri GC kullanılarak belirlendi ve bütün numunelerde peroksit değeri, serbest yağ

asidi oranı ve fenol içeriği saptandı. Yüksek oleik asit içeriği yenilebilir yağlarda termal bozunmayı artırdı. Glikoz

oleat ve glikoz laurat bitkisel bazlı yenebilir yağlar için bir termal oksidasyon önleyici olarak etkili olurken, glikoz

oleat her türlü yağ için glikoz laurattan daha iyi antioksidan özellik gösterdi.

References

  • Addis P B, Warner G J, 1991. In Free Radicals and Food Additives, eds 0. I. Aruoma & B. Halliwell. Taylor and Francis Ltd, London, 77.
  • Akin M, Arabaci G, Saki N, 2013. Total phenols, antioxidant potential and tyrosinase inhibitory activity of walnut (Juglans regia L.) leaf, husk and seed. Asian Journal of Chemistry, 25(16); 9337-9340.
  • Allen DK, Tao BY, 2002. Synthesis and Characterization of Maltose Fatty Acid Monoesters as Biosurfactants. Journal of surfactants and detergents, 5: 245-255.
  • AOCS (1993), Official Methods and Recommended Practices of the American Oil Chemists’ Society, American Oil Chemists Society, Chicago, IL.
  • Aoshima H, Miyagisnima A, Nozawa Y, Sadzuka Y, Sonobe T, 2005. Glycerin fatty acid esters as a new lubricant of tablets. International Journal of Pharmaceutics, 293: 25-34.
  • Awasthi SK, 2000. Definition of standards of quality. In J. P. Bhatnagar (Ed.), Book prevention of food adulteration act with rules (3rd ed., pp. 699-700). New Delhi, India: Ashoka Law House, 707.
  • Choe YO, Min DB, 2005. Chemistry and reactions of reactive oxygen species in foods. Journal of Food Science, 70(9): 142-159.
  • Erickson SK, Matsui SM, Strewsbury MA, Coopre AD, Gordon R, 1978. Effects of 25- hydroxycholesterol and rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in vivo in perfused liver and hepatocytes. J. Biol. Chem, 253: 4159-4164.
  • Frankel EN, 1993. In search of better methods to evaluate natural antioxidants and oxidative stability in food lipids. Trends in Food Sci. Technol., 4: 220–225.
  • Furukawa S, Akiyoshi K, O’Tool GA, Ogihara G, Morinaga Y, 2010. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria. International Journal of Food Microbiology, 138: 176-180.
  • Ghafoorunissa SH, 2007. Sesame lignans enhance the thermal stability of edible vegetable oils. Food chemistry, 105: 1076-1085.
  • Gunstone FD, 2000. Composition and properties of edible oils, in Edible Oil Processing (eds W. Hamm and R.J. Hamilton). Sheffield Academic Press, Sheffield, 1-33.
  • Hemalatha S, Ghafoorunissa, 2007. Sesame lignans enhance the termel stability of edible vegitable oils. Food Chemistry, 105: 1076-1085.
  • Kaitaranta JK, 1992. Control of lipid oxidation in fish oil with various anti-oxidative compounds. Journal of American Chemical Society, 69: 810-813.
  • Kays S, Teng Q, 1997. Characterization of Insecticidal Sugar Esters of Petunia. J. Agric. Food Chem, 45: 270-275.
  • Koski A, Pekkarinen S, Hopia Anu, Wahala K, Heinonen M, 2003. Precessing of rapeseed oil: effects on sinapic acid derivative content and oxidative stability. Eur. Food. Res. Technol., 217: 110-114.
  • Lee J, Chung H, Chang P, Lee J, 2007. Development of a method the oxidative stability of edible oils using 2,2-diphenyl-1-picrylhydrazyl (DPPH). Food Chemistry, 103: 662-669.
  • Li Lu, Ji F, Wang J, Li Y, Bao Y, 2015. Esterification degree of fructose laurate exerted by Candida antarcticalipase B in organic solvents. Enzyme and Microbial Technology, 69: 46-53.
  • Maranesi M, Bochicchio D, Montellato L, Zaghini A, Pagliuca G, Badiani A, 2005. Effect of microwave cooking or broiling on selected nutrient contents, fatty acid patterns and true retention values in separable lean from lamb rib-loins, with emphasis on conjugated linoleic acid. Food Chemistry, 90: 207-218.
  • Molkentin J, 2009. Authentication of organic milk using d13C and the a-linolenic acid content of milk fat. Journal of Agricultural and Food Chemistry, 57: 785–790.
  • Rosa PM, Antoniassi R, Freitas SC, Bizzo HR, Zanotto DL, Oliveira MF, Castiglioni VBR, 2009. Chemical composition of Brazilian sunflower varieties. Helia, 32(50): 145-156.
  • Sakouhi F, Absalon C, Flamini G, Cioni PL, Kallel H, Boukhchina S, 2010. Lipid components of olive oil from Tunisian Cv. Sayali: Characterization and authenticity. ticity. Comptes Rendus Biologies. 333: 642-648.
  • Silva AC, Jorge N, 2012. Oxidative stability of soybean oil added to Lentinus edodes and Agaricus blazei mushromms extracts in an accelerated storage test. Nutrition& Food Science, 42: 34-40.
  • Simic MG, Karel M, 1980. Autoxidation in Food and Biological Systems. Eds. Plenum Press, New York (USA).
  • St. Angelo AJ, 1992. Lipid Oxidation in Food. ACS Symposium Series, No 500, Ed. American Chemical Society, Washington (USA).
  • Tan CP, Che Man Y B, Selamat J, Yusoff MSA, 2002. Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chemistry, 76: 385-389.
  • Von der Haar D, Stabler A, Wichmann R, Schwiggert-Weisz U, 2015. Enzymatic esterification of free fatty acid in vegetable oils utilizing different immobilized lipases, Biotechnol. Lett., 37: 169-174.
  • Yanishlieva NV, Marinova EM, 2001. Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol., 103: 752-767.
  • Zeb A, Murkovic M, 2013. Pro-oxidant effects of b-carotene during thermal oxidation of edible oils. J. Am. Oil Chem. Soc., 90: 881-889.
  • Zhang Y, Yang L, Zu Y, Chen X, Wang F, Liu F, 2010. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chemistry, 118(3); 656-662.
  • Zhao L, Zhang H, Hao T, Li S, 2015. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food chemistry, 187: 370-377.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Neslihan Şaki 0000-0002-2215-1622

Mustafa Akın This is me 0000-0003-4268-6891

Publication Date December 30, 2018
Submission Date April 2, 2018
Acceptance Date July 10, 2018
Published in Issue Year 2018

Cite

APA Şaki, N., & Akın, M. (2018). Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi. Journal of the Institute of Science and Technology, 8(4), 171-179. https://doi.org/10.21597/jist.411739
AMA Şaki N, Akın M. Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi. Iğdır Üniv. Fen Bil Enst. Der. December 2018;8(4):171-179. doi:10.21597/jist.411739
Chicago Şaki, Neslihan, and Mustafa Akın. “Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi”. Journal of the Institute of Science and Technology 8, no. 4 (December 2018): 171-79. https://doi.org/10.21597/jist.411739.
EndNote Şaki N, Akın M (December 1, 2018) Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi. Journal of the Institute of Science and Technology 8 4 171–179.
IEEE N. Şaki and M. Akın, “Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi”, Iğdır Üniv. Fen Bil Enst. Der., vol. 8, no. 4, pp. 171–179, 2018, doi: 10.21597/jist.411739.
ISNAD Şaki, Neslihan - Akın, Mustafa. “Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi”. Journal of the Institute of Science and Technology 8/4 (December 2018), 171-179. https://doi.org/10.21597/jist.411739.
JAMA Şaki N, Akın M. Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8:171–179.
MLA Şaki, Neslihan and Mustafa Akın. “Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi”. Journal of the Institute of Science and Technology, vol. 8, no. 4, 2018, pp. 171-9, doi:10.21597/jist.411739.
Vancouver Şaki N, Akın M. Glikoz Yağ Asidi Esterlerinin Bitkisel Bazlı Yenilebilir Yağların Termal Bozunmasına Etkisi. Iğdır Üniv. Fen Bil Enst. Der. 2018;8(4):171-9.