Review
BibTex RIS Cite

Attosecond Science and Future Trends

Year 2019, , 360 - 373, 01.03.2019
https://doi.org/10.21597/jist.452353

Abstract

What are the
final size and velocity limits of electronic data processing and magnetic
information storage areas, and how can we approach these boundaries questions
and the understanding and control of microscopic electron motion along with
many scientific studies have led to the birth and progress of Attosecond
Science.
  The progress of ultrafast laser technology in
recent years, the interaction process between the matter and the intense field
play a key role in understanding how energy and charge are carried in atoms as
well as in more complex solid and molecular systems.  This review study will focus on the basic
concepts and experimental tools that allow to observe and control the atomic
scale motion of electrons in real time, understand the theoretical models that
are critical for combining experimental observability with microscopic
variables, and the expected technological effects.  For this purpose, the role of nano and
attosecond technologies in atomic and molecular physics, and condensed matter
physics will be investigated and local literature sources will be presented
about several important and recent current application areas of attosecond
pulses.

References

  • Alp D, 2017. Super Intensity Laser Field Interacted with atomic System in Multiphoton Process: Non-dipole and non-relativistic effects, Int. Journal Pure and Applied Science, 3(2):1-9.
  • Altucci C, Nebbioso A, Benedetti R, Esposito R, Carafa V, Conte M, Micciarelli M, Altucci L, Velotta R, 2012. Nonlinear protein–nucleic acid crosslinking induced by femtosecond uv laser pulses in living cells, Laser Phys. Lett., 9, 234.
  • Becker W, Lohr A, Kleber MA, 1996. Unified theory of high-harmonic generation: Application to polarization properties of the harmonic, Phys. Rev. A., 56, 645.
  • Belshaw L, Calegari F, Duffy MJ, Trabattoni A, Poletto L, Nisoli M, Greenwood JB, 2012. Observation of ultrafast charge migration in an amino acid, J. Phys. Chem. Lett., 3, 3751–4.
  • Bhattacharjee Y, 2001. Measuring the immeasurable, Nature, 412:474-476.
  • Burnett K, Reed VC, Knight PL, 1993. Atoms in ultra-intense laser fields, Journal Physics B., 26, 571.
  • Calegari F, Trabattoni A, Palacio A, Ayuso D, Castrovilli MC, Greenwood JB, Decleva P, Martín F, Nisoli M, 2016. Charge migration induced by attosecond pulses in bio-relevant molecules, J. Phys. B: Atomic, Molecular and Optical Physics, 49, 142001.
  • Chang Z, 2011. Fundamentals of Attosecond Optics, CRC Press. Vol. 1., USA, 519s.
  • Chirila CC, Kylstra NJ, Potvliege RM, 2002. Nondipole effects in photon emission by laser-driven ions, Phys. Rev. A., 66: 063411.
  • Ciappina MF, Pérez-Hernández JA, Landsman AS, Okell WA, Zherebtsov S, Förg B, Schötz J, Seiffert L, Fennel T, Shaaran T, Zimmermann T, Chacón A, Guichard R, Zaïr A, Tisch JW, Marangos JP, Witting T, Braun A, Maier SA, Roso L, Krüger M, Hommelhoff P, Kling MF, Krausz F, Lewenstein M., 2017. Attosecond physics at the nanoscale, Report on Prog. Phys., 80, 054401 (50pp).
  • Corkum PB, 1993. Plasma perspective on strong-field multiphoton ionization, Phy. Rev. Letter, 71, 13.
  • De Maria AJ, Stester DA, Heynau H, 1996. Self mode-locking of lasers with saturable absorbers. App. Phy. Lett., 8, 174.
  • DiMauro LF, Agostini P, 1995. Ionization dynamics in strong laser fields. In Advan in Atomic, Opt. Phys, 35, 79.
  • Ditmire T, Smith RA, Tisch JWG, Hutchinson MHR, 1997. High intensity laser absorption by gases of atomic clusters, Phys. Rev. Lett., 78, 3121.
  • Ditmire T, Tisch JWG, Springate E, Mason MB, Hay N, Smith RA, Marangos J, Hutchinson MHR. 1997. Highenergy ions produced in explosions of superheated atomic clusters, Nature, 386, 54.
  • Eckle P, Smolarski M, Schlup P, Biegert J, Staudte S, Schoffler M, Muller HG, Dorner R, Keller U, 2008. Attosecond angular streaking, Nature Phys., 4, 565–70.
  • Fork RL, Cruz CH, Becker PC, Shank CH, 1987. Compression of optical pulses to six femtoseconds by using cubic phase compression, Opt. Let., 12, 433.
  • Gallmann L, Cirelli C, Keller U, 2012. Attosecond science: Recent Highlight and Future Trends, Ann. Rev. of Phys. Chem., 63, 447-469.
  • Goulielmakis E, Loh ZH, Wirth A, Santra R, Rohringer N, Yakovlev VS, Zherebtsov S, Pfeifer T, Azzeer AM, Kling MF, Leone SR, Krausz F, 2010. Real-time observation of valence electron motion, Nature, 466, 739–743.
  • Hentschel M, Keinberger R, Spielman Ch, Reider GA, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher, Krausz F, 2001. Attosecond metrology, Nature, 414, 509.
  • Itri F, Monti DM, Della VB, Vinciguerra R, Chino M, Gesuele F, Lombardi A, Velotta R, Altucci C, Birolo L, Piccoli R, Arciello A, 2016. Femtosecond uv-laser pulses to unveil protein–protein interactions in living cells, Cellular and Molecular Life Science, 73, 637.
  • Joachain CJ, Kylstra NJ, Potvliege RM, 2003. Atoms in intense, ultrashort laser pulses: non-dipole and relativistic effects, Journal of Modern Optics, 50:3-4, 313-329.
  • Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW, 2012. Nanostructure-enhanced atomic line emission, Nature, 485: E1–3.
  • Krause JL, Schafer KJ, Kulander KC, 1992. High-order harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett., 68, 3535.
  • Keldysh LV, 1965. Ionization in the field of a strong electromagnetic wave. Soviet Physics-Journal of Experimental and Theoretical Physics, 20, 1307–14.
  • Kulander KC, Schafer KJ, Krause JL, 1992. Time-dependent studies multiphoton processes, Academic Press, in Atoms in Intense Laser Fields, San Diego.
  • Kulander KC, Schafer KJ, Krause JL, 1993. Super Intense Laser Atom Physics, (SILAP)III, in Proceedings of the Workshop, Plenum, New York, 25s.
  • Kübel R, Siemering C, Burger C, Kling NG, Li H, Alnaser AS, Bergues B, Zherebtsov S, Azzeer AM, Ben-Itzhak I, Moshammer R, de Vivie-Riedle R, Kling MF, 2016. Steering proton migration in hydrocarbons using intense few-cycle laser fields, Phys. Rev. Let, 116, 19300.
  • Landsman AS, Weger M, Maurer J, Boge R, Ludwing A, Heuser S, Cirelli C, Lukas G., Keller U, 2014. Ultrafast resolution of tunneling delay time, Optica, 1, 343-349.
  • Lein M, 2012. Atomic physics: Electrons get real. Nature, 485, 313–314.
  • Leo G, Altucci C, Bourgoin-Voillard S, Gravagnuolo AM, Esposito R, Marino, Costello CE, Velotta R, Birolo L, 2013. Ultraviolet laser-induced cross-linking in peptides, Rap. Com. Mass Spec., 27, 1660.
  • Lewenstein M, L’Huillier A, 2009. Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization, Strong Field Laser Physics. (Ed.) Brabec, T. New York: Springer, 147–83s.
  • L’Huillier A, Li XF, Lompré LA, 1990. Propagation effects in high-order harmonic generation in rare gases, J. Opt. Soc. Amer. B., 7, 527.
  • L’Huillier A, Schafer KJ, Kulander KC, 1991. Higher-order harmonic generation in xenon at 1064 nm: The role of phase matching, Phys. Rev. Lett., 66, 2200.
  • L’Huillier A, Balcou P, Candel S, Schafer KJ, Kulander KC, 1992. Calculations of HHG processes in Xe at 1064 nm, Phys. Rev. A., 46, 2778.
  • L’Huillier A, Lompré LA, Mainfray G, Manus C, 1992. Atoms in Intense Laser Fields, (Ed.) Gavrila. M., New York: Academic, 139s.
  • Li XF, L’Huillier A, Ferray M, Lompré LA, Mainfray G, 1989. Multi harmonic generation in rare gases at high laser intensity, Phys. Rev. A., 39, 575.
  • McPherson A, Gibson G, Jara H, Johann U, Luk TS, McIntyre IA, Boyer K, Rhodes CK, 1987. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases, J. Opt. Soc. Am. B., 4, 595.
  • Mikhailova YM, Platonenko VT, Rykovanov SG, 2005. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse, J. Exp. and Th. Phys. Lett., 81, 571–74.
  • Moulton PF, 1986. Spectroscopic and laser characteristics of Ti:Al2O3, J. of Opt. Soc. Amer. B., 3, 125.
  • Naumova N, Sokolov I, Nees J, Maksimchuk A, Yanovsky V, Mourou G, 2004. Attosecond electron bunches, Phys. Rev. Lett., 93, 195003.
  • Pukhov A, Meyer-ter-Vehn J, 2002. Laser wake field acceleration: the highly non-linear broken-wave regime. App. Phys. B., 74, 355–6.
  • Reiss HR, 1980. Effect of an intense electroma field on a weakly bound system, Phys. Rev. A., 22, 1786.
  • Salieres P, L’Huillier A, Antoin P, Lewenstein M, 1999. In Advances in Atomic, Molecular, and Optical Physics. edited by Bederson, B. and Walther, H., Academic Press, New York, 41, 83s.
  • Schafer KJ, Yang B, DiMauro LF, Kulander KC, 1993. ATI beyond the high harmonic cutoff, Phys. Rev. Lett., 70, 1599.
  • Schnnrer M, Speilmann Ch, Wobrauschek P, Streli C, Burnett NH, Kan C, Ferencz K, Koppitsch R, Cheng Z, Brabec T, Krausz F, 1998. Coherent 0.5-keV x-ray emission from helium driven by a sub-10-fs laser, Phys. Rev. Lett., 80, 3236.
  • Schnnrer M, Cheng Z, Hentschel M, Tempea G, Kálmán P, Brabec T, Krausz F, 1999. Absorption-limited generation of coherent ultrashort soft-x-ray pulses, Phys. Rev. Lett., 83, 722.
  • Shafir D, Soifer H, Bruner BD, Dagan M, Mairesse Y, Patchkovskii S, Ivanov MY, Smirnova O, Dudovich N, 2012. Resolve the time when an electron exits a tunnelling barrier, Nature, 485, 343–346.
  • Shao YL, Ditmire T, Tisch JWG, Springate E, Marangos JP, Hutchinson MHR, 1996. Multi-kev electron generation in the interaction of intense laser pulses with xe clusters, Phys. Rev. Lett., 77, 3343.
  • Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov MY, 2009. High harmonic interferometry of multi-electron dynamics in molecules, Nature, 460, 972–977.
  • Stockman MI, Kling MF, Kleineberg U, Krausz F, 2007. Attosecond nanoplasmonic-field microscope, Nature Pho., 1, 539–44.
  • Sumeruk HA, Kneip S, Symes DR, Churina IV, Belolipetski AV, Donnelly, TD, Ditmire T, 2007. Control of strong-laserfield coupling to electrons in solid targets with wavelengthscale spheres, Phys. Rev. Lett., 98, 045001.
  • Symes DR, Comley AJ, Smith RA, 2004. Fast-ion production from short-pulse irradiation of ethanol microdroplets, Phys. Rev. Lett., 93, 145004.
  • Tisch JWG, Ditmire T, Fraser DJ, Hay N, Mason MB, Springate, Marangos JP, Hutchinson, MHR, 1997. Investigation of high-harmonic generation from xenon atom clusters, Jour. Phys. B: Atomic, Molecular and Opt. Phys., 30, L709.
  • Vampa G, Fattahi H, Vuckovic J, Krausz F, 2017. Attosecond nanophotonics. Nature Photonics, 11, 210.
  • Van Linden HB, van den Heuvell, Muller HG, 1988. In multiphoton processes, Cambridge Studies in Modern Optics Vol. 8, ed. Smith, S., J., Knight, P., L., Cambridge University Pres., New York.
  • Wirth A, Hassan MT, Grguras I, Gagnon J, Moulet, Luu TT, Pabst S, Santra R, Alahmed ZA, Azzeer AM, Yakovlev VS, Pervak V, Krausz F, Goulielmakis E, 2011. Synthesized light transients, Science, 334, 195–200.
  • Yakovlev V, Stockman MI, Krausz F, Baum P, 2015. Atomic scale diffractive imaging of sub-cycle electron dynamics in condensed matter, Scientific Reports, 5, 14581.
  • Zewail AH, 1994. Femtochemistry: Ultrafast dynamics of the chemical bond, Vol. I, World Scientific, Sigapore 341.

Attosaniye Bilimi ve Gelecekteki Eğilimler

Year 2019, , 360 - 373, 01.03.2019
https://doi.org/10.21597/jist.452353

Abstract

Elektronik
bilgi işleme, manyetik bilgi depolama alanlarının nihai boyut ve hız sınırları
nedir ve bu sınırlara nasıl yaklaşabiliriz soruları ile mikroskobik düzeyde
elektron hareketinin anlaşılması ve kontrolü üzerinde yapılan birçok bilimsel
çalışma, attosaniye biliminin doğmasına ve ilerlemesine neden olmuştur.  Son yıllardaki ultra-hız lazer teknolojisinin
ilerlemesi, enerji ve yükün sadece atomlarla değil, aynı zamanda daha karmaşık
katı ve moleküler sistemlerde de nasıl taşındığını anlamak için madde ile yoğun
alan arasındaki etkileşme süreci anahtar rol görevi görür.  Derleme olarak hazırlanan bu çalışmada,
elektronların atomik ölçekli hareketini gerçek zamanlı olarak gözlemleme ve
kontrol etme olanağı sağlayan temel kavramlar ve deneysel araçlar, deneysel
gözlenebilirliğin mikroskobik değişkenlerle birleştirilmesi için kritik rol
oynayan teorik modeller ve bunun beklenen teknolojik etkileri ele
alınmıştır.  Bu amaçla, atom ve moleküler
fiziği ile yoğun-madde fiziğinde nano ve attosaniye teknolojisinin rolü
araştırılarak, attosaniyelik atımların birkaç önemli ve son güncel uygulama
alanları hakkında yerel literatüre kaynak niteliğinde bilgi sunacaktır.

References

  • Alp D, 2017. Super Intensity Laser Field Interacted with atomic System in Multiphoton Process: Non-dipole and non-relativistic effects, Int. Journal Pure and Applied Science, 3(2):1-9.
  • Altucci C, Nebbioso A, Benedetti R, Esposito R, Carafa V, Conte M, Micciarelli M, Altucci L, Velotta R, 2012. Nonlinear protein–nucleic acid crosslinking induced by femtosecond uv laser pulses in living cells, Laser Phys. Lett., 9, 234.
  • Becker W, Lohr A, Kleber MA, 1996. Unified theory of high-harmonic generation: Application to polarization properties of the harmonic, Phys. Rev. A., 56, 645.
  • Belshaw L, Calegari F, Duffy MJ, Trabattoni A, Poletto L, Nisoli M, Greenwood JB, 2012. Observation of ultrafast charge migration in an amino acid, J. Phys. Chem. Lett., 3, 3751–4.
  • Bhattacharjee Y, 2001. Measuring the immeasurable, Nature, 412:474-476.
  • Burnett K, Reed VC, Knight PL, 1993. Atoms in ultra-intense laser fields, Journal Physics B., 26, 571.
  • Calegari F, Trabattoni A, Palacio A, Ayuso D, Castrovilli MC, Greenwood JB, Decleva P, Martín F, Nisoli M, 2016. Charge migration induced by attosecond pulses in bio-relevant molecules, J. Phys. B: Atomic, Molecular and Optical Physics, 49, 142001.
  • Chang Z, 2011. Fundamentals of Attosecond Optics, CRC Press. Vol. 1., USA, 519s.
  • Chirila CC, Kylstra NJ, Potvliege RM, 2002. Nondipole effects in photon emission by laser-driven ions, Phys. Rev. A., 66: 063411.
  • Ciappina MF, Pérez-Hernández JA, Landsman AS, Okell WA, Zherebtsov S, Förg B, Schötz J, Seiffert L, Fennel T, Shaaran T, Zimmermann T, Chacón A, Guichard R, Zaïr A, Tisch JW, Marangos JP, Witting T, Braun A, Maier SA, Roso L, Krüger M, Hommelhoff P, Kling MF, Krausz F, Lewenstein M., 2017. Attosecond physics at the nanoscale, Report on Prog. Phys., 80, 054401 (50pp).
  • Corkum PB, 1993. Plasma perspective on strong-field multiphoton ionization, Phy. Rev. Letter, 71, 13.
  • De Maria AJ, Stester DA, Heynau H, 1996. Self mode-locking of lasers with saturable absorbers. App. Phy. Lett., 8, 174.
  • DiMauro LF, Agostini P, 1995. Ionization dynamics in strong laser fields. In Advan in Atomic, Opt. Phys, 35, 79.
  • Ditmire T, Smith RA, Tisch JWG, Hutchinson MHR, 1997. High intensity laser absorption by gases of atomic clusters, Phys. Rev. Lett., 78, 3121.
  • Ditmire T, Tisch JWG, Springate E, Mason MB, Hay N, Smith RA, Marangos J, Hutchinson MHR. 1997. Highenergy ions produced in explosions of superheated atomic clusters, Nature, 386, 54.
  • Eckle P, Smolarski M, Schlup P, Biegert J, Staudte S, Schoffler M, Muller HG, Dorner R, Keller U, 2008. Attosecond angular streaking, Nature Phys., 4, 565–70.
  • Fork RL, Cruz CH, Becker PC, Shank CH, 1987. Compression of optical pulses to six femtoseconds by using cubic phase compression, Opt. Let., 12, 433.
  • Gallmann L, Cirelli C, Keller U, 2012. Attosecond science: Recent Highlight and Future Trends, Ann. Rev. of Phys. Chem., 63, 447-469.
  • Goulielmakis E, Loh ZH, Wirth A, Santra R, Rohringer N, Yakovlev VS, Zherebtsov S, Pfeifer T, Azzeer AM, Kling MF, Leone SR, Krausz F, 2010. Real-time observation of valence electron motion, Nature, 466, 739–743.
  • Hentschel M, Keinberger R, Spielman Ch, Reider GA, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher, Krausz F, 2001. Attosecond metrology, Nature, 414, 509.
  • Itri F, Monti DM, Della VB, Vinciguerra R, Chino M, Gesuele F, Lombardi A, Velotta R, Altucci C, Birolo L, Piccoli R, Arciello A, 2016. Femtosecond uv-laser pulses to unveil protein–protein interactions in living cells, Cellular and Molecular Life Science, 73, 637.
  • Joachain CJ, Kylstra NJ, Potvliege RM, 2003. Atoms in intense, ultrashort laser pulses: non-dipole and relativistic effects, Journal of Modern Optics, 50:3-4, 313-329.
  • Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW, 2012. Nanostructure-enhanced atomic line emission, Nature, 485: E1–3.
  • Krause JL, Schafer KJ, Kulander KC, 1992. High-order harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett., 68, 3535.
  • Keldysh LV, 1965. Ionization in the field of a strong electromagnetic wave. Soviet Physics-Journal of Experimental and Theoretical Physics, 20, 1307–14.
  • Kulander KC, Schafer KJ, Krause JL, 1992. Time-dependent studies multiphoton processes, Academic Press, in Atoms in Intense Laser Fields, San Diego.
  • Kulander KC, Schafer KJ, Krause JL, 1993. Super Intense Laser Atom Physics, (SILAP)III, in Proceedings of the Workshop, Plenum, New York, 25s.
  • Kübel R, Siemering C, Burger C, Kling NG, Li H, Alnaser AS, Bergues B, Zherebtsov S, Azzeer AM, Ben-Itzhak I, Moshammer R, de Vivie-Riedle R, Kling MF, 2016. Steering proton migration in hydrocarbons using intense few-cycle laser fields, Phys. Rev. Let, 116, 19300.
  • Landsman AS, Weger M, Maurer J, Boge R, Ludwing A, Heuser S, Cirelli C, Lukas G., Keller U, 2014. Ultrafast resolution of tunneling delay time, Optica, 1, 343-349.
  • Lein M, 2012. Atomic physics: Electrons get real. Nature, 485, 313–314.
  • Leo G, Altucci C, Bourgoin-Voillard S, Gravagnuolo AM, Esposito R, Marino, Costello CE, Velotta R, Birolo L, 2013. Ultraviolet laser-induced cross-linking in peptides, Rap. Com. Mass Spec., 27, 1660.
  • Lewenstein M, L’Huillier A, 2009. Principles of single atom physics: high-order harmonic generation, above-threshold ionization and non-sequential ionization, Strong Field Laser Physics. (Ed.) Brabec, T. New York: Springer, 147–83s.
  • L’Huillier A, Li XF, Lompré LA, 1990. Propagation effects in high-order harmonic generation in rare gases, J. Opt. Soc. Amer. B., 7, 527.
  • L’Huillier A, Schafer KJ, Kulander KC, 1991. Higher-order harmonic generation in xenon at 1064 nm: The role of phase matching, Phys. Rev. Lett., 66, 2200.
  • L’Huillier A, Balcou P, Candel S, Schafer KJ, Kulander KC, 1992. Calculations of HHG processes in Xe at 1064 nm, Phys. Rev. A., 46, 2778.
  • L’Huillier A, Lompré LA, Mainfray G, Manus C, 1992. Atoms in Intense Laser Fields, (Ed.) Gavrila. M., New York: Academic, 139s.
  • Li XF, L’Huillier A, Ferray M, Lompré LA, Mainfray G, 1989. Multi harmonic generation in rare gases at high laser intensity, Phys. Rev. A., 39, 575.
  • McPherson A, Gibson G, Jara H, Johann U, Luk TS, McIntyre IA, Boyer K, Rhodes CK, 1987. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases, J. Opt. Soc. Am. B., 4, 595.
  • Mikhailova YM, Platonenko VT, Rykovanov SG, 2005. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse, J. Exp. and Th. Phys. Lett., 81, 571–74.
  • Moulton PF, 1986. Spectroscopic and laser characteristics of Ti:Al2O3, J. of Opt. Soc. Amer. B., 3, 125.
  • Naumova N, Sokolov I, Nees J, Maksimchuk A, Yanovsky V, Mourou G, 2004. Attosecond electron bunches, Phys. Rev. Lett., 93, 195003.
  • Pukhov A, Meyer-ter-Vehn J, 2002. Laser wake field acceleration: the highly non-linear broken-wave regime. App. Phys. B., 74, 355–6.
  • Reiss HR, 1980. Effect of an intense electroma field on a weakly bound system, Phys. Rev. A., 22, 1786.
  • Salieres P, L’Huillier A, Antoin P, Lewenstein M, 1999. In Advances in Atomic, Molecular, and Optical Physics. edited by Bederson, B. and Walther, H., Academic Press, New York, 41, 83s.
  • Schafer KJ, Yang B, DiMauro LF, Kulander KC, 1993. ATI beyond the high harmonic cutoff, Phys. Rev. Lett., 70, 1599.
  • Schnnrer M, Speilmann Ch, Wobrauschek P, Streli C, Burnett NH, Kan C, Ferencz K, Koppitsch R, Cheng Z, Brabec T, Krausz F, 1998. Coherent 0.5-keV x-ray emission from helium driven by a sub-10-fs laser, Phys. Rev. Lett., 80, 3236.
  • Schnnrer M, Cheng Z, Hentschel M, Tempea G, Kálmán P, Brabec T, Krausz F, 1999. Absorption-limited generation of coherent ultrashort soft-x-ray pulses, Phys. Rev. Lett., 83, 722.
  • Shafir D, Soifer H, Bruner BD, Dagan M, Mairesse Y, Patchkovskii S, Ivanov MY, Smirnova O, Dudovich N, 2012. Resolve the time when an electron exits a tunnelling barrier, Nature, 485, 343–346.
  • Shao YL, Ditmire T, Tisch JWG, Springate E, Marangos JP, Hutchinson MHR, 1996. Multi-kev electron generation in the interaction of intense laser pulses with xe clusters, Phys. Rev. Lett., 77, 3343.
  • Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov MY, 2009. High harmonic interferometry of multi-electron dynamics in molecules, Nature, 460, 972–977.
  • Stockman MI, Kling MF, Kleineberg U, Krausz F, 2007. Attosecond nanoplasmonic-field microscope, Nature Pho., 1, 539–44.
  • Sumeruk HA, Kneip S, Symes DR, Churina IV, Belolipetski AV, Donnelly, TD, Ditmire T, 2007. Control of strong-laserfield coupling to electrons in solid targets with wavelengthscale spheres, Phys. Rev. Lett., 98, 045001.
  • Symes DR, Comley AJ, Smith RA, 2004. Fast-ion production from short-pulse irradiation of ethanol microdroplets, Phys. Rev. Lett., 93, 145004.
  • Tisch JWG, Ditmire T, Fraser DJ, Hay N, Mason MB, Springate, Marangos JP, Hutchinson, MHR, 1997. Investigation of high-harmonic generation from xenon atom clusters, Jour. Phys. B: Atomic, Molecular and Opt. Phys., 30, L709.
  • Vampa G, Fattahi H, Vuckovic J, Krausz F, 2017. Attosecond nanophotonics. Nature Photonics, 11, 210.
  • Van Linden HB, van den Heuvell, Muller HG, 1988. In multiphoton processes, Cambridge Studies in Modern Optics Vol. 8, ed. Smith, S., J., Knight, P., L., Cambridge University Pres., New York.
  • Wirth A, Hassan MT, Grguras I, Gagnon J, Moulet, Luu TT, Pabst S, Santra R, Alahmed ZA, Azzeer AM, Yakovlev VS, Pervak V, Krausz F, Goulielmakis E, 2011. Synthesized light transients, Science, 334, 195–200.
  • Yakovlev V, Stockman MI, Krausz F, Baum P, 2015. Atomic scale diffractive imaging of sub-cycle electron dynamics in condensed matter, Scientific Reports, 5, 14581.
  • Zewail AH, 1994. Femtochemistry: Ultrafast dynamics of the chemical bond, Vol. I, World Scientific, Sigapore 341.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Dilan Alp 0000-0001-7385-2659

Publication Date March 1, 2019
Submission Date August 9, 2018
Acceptance Date October 19, 2018
Published in Issue Year 2019

Cite

APA Alp, D. (2019). Attosaniye Bilimi ve Gelecekteki Eğilimler. Journal of the Institute of Science and Technology, 9(1), 360-373. https://doi.org/10.21597/jist.452353
AMA Alp D. Attosaniye Bilimi ve Gelecekteki Eğilimler. Iğdır Üniv. Fen Bil Enst. Der. March 2019;9(1):360-373. doi:10.21597/jist.452353
Chicago Alp, Dilan. “Attosaniye Bilimi Ve Gelecekteki Eğilimler”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 360-73. https://doi.org/10.21597/jist.452353.
EndNote Alp D (March 1, 2019) Attosaniye Bilimi ve Gelecekteki Eğilimler. Journal of the Institute of Science and Technology 9 1 360–373.
IEEE D. Alp, “Attosaniye Bilimi ve Gelecekteki Eğilimler”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 1, pp. 360–373, 2019, doi: 10.21597/jist.452353.
ISNAD Alp, Dilan. “Attosaniye Bilimi Ve Gelecekteki Eğilimler”. Journal of the Institute of Science and Technology 9/1 (March 2019), 360-373. https://doi.org/10.21597/jist.452353.
JAMA Alp D. Attosaniye Bilimi ve Gelecekteki Eğilimler. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:360–373.
MLA Alp, Dilan. “Attosaniye Bilimi Ve Gelecekteki Eğilimler”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 360-73, doi:10.21597/jist.452353.
Vancouver Alp D. Attosaniye Bilimi ve Gelecekteki Eğilimler. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(1):360-73.