Research Article
BibTex RIS Cite

Karadeniz Deniz Sedimentlerinden İzole Edilen Denizel Aktinobakteriler Tarafından Alkali Enzimlerin Üretimi

Year 2019, , 647 - 654, 01.06.2019
https://doi.org/10.21597/jist.466999

Abstract

Mikrobiyal kaynaklardan elde edilen alkali enzimler, farklı endüstriyel süreçlerde pek çok uygulama bulmaktadırlar ve ticari değere sahiptirler. Bu çalışmada, Karadeniz sedimentlerinden izole edilen iki aktinobakterinin (Streptomyces sp. K16 ve K19) endüstriyel alkali enzimleri üretme potansiyellerinin incelenmesi ile farklı kimyasal ve fiziksel koşullar altında aktivitelerinin karakterize edilmesi amaçlanmıştır. Üretim için optimum inkübasyon süresinin 96 saat olduğu bulunmuş ve bu iki aktinobakteri kullanılarak sırası ile amilazlar için 7.91 ve 7.94 U mL-1, lipazlar için 0.55 ve 0.82 U mL-1 ve proteazlar için 3.07 ve 2.34 U mL-1 aktiviteler elde edilmiştir. Enzimler için optimum pH ve sıcaklık değerlerinin pH 8.0 ve 37°C olduğu bulunmuştur. Bütün enzimler, 3.0 ile 10.0 arasında değişen pH değerlerinde 2 saat inkübasyondan sonra değişen miktarlarda stabilite göstermişlerdir. Diğer taraftan, amilazlar ve proteazlar, denenen sıcaklık koşulları altında 2 saatlik inkübasyondan sonra değişen miktarlarda stabilite gösterirken lipazlar 50°C’ye kadar stabil kalabilmişlerdir. Bulgular ışığında, bu aktinobakteriler ve onların enzimlerinin, ileriki çalışmalar için potansiyele sahip oldukları düşünülmektedir.

References

  • Akhtar N, Mahmud ASM, Khan MS, Taznin T, Haque ME, Sultana S, Sultana S, 2013. Effects of cultural conditions on the production of extracellular protease by Streptomyces albolongus and Streptomyces aburaviensis. Enzyme Engineering, 2(2): 1-5.
  • Aly MM, Tork S, Al-Garni SM, Nawar L, 2012. Production of lipase from genetically improved Streptomyces exfoliates LP10 isolated from oil-contaminated soil. African Journal of Microbiology Research, 6(6): 1125-1137.
  • Arikan B, Unaldi N, Coral G, Colak Ö, Aygan A, Gülnaz O, 2003. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochemistry, 38(10): 1397-1403.
  • Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248-254.
  • Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S, 2011. A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10: 221.
  • Deljou A, Arezi I, 2016. Production of thermostable extracellular a-amylase by a moderate thermophilic Bacillus licheniformis-AZ2 isolated from Qinarje Hot spring (Ardebil prov. of Iran). Periodicum Biologorum, 118(4): 405-416.
  • de Souza PM, Magalhaes PO, 2010. Application of microbial α-amylase in industry – a review. Brazilian Journal of Microbiology, 41(4): 850-861.
  • Ghorbel S, Kammoun M, Soltana H, Nasri M, Hmidet N, 2014. Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents. BioMed Research International, 2014: 1-8.
  • Gupta R, Beg QK, Lorenz P, 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59(1): 15-32.
  • Gurung N, Ray S, Bose S, Rai V, 2013. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013: 1-18.
  • Hoque M, Khanam M, Shiekh A, Nahar N, Khan MR, Khan ZUM, 2006. Characterization and optimization of α-amylase activity of Streptomyces clavifer. Pakistan Journal of Biological Sciences, 9(7): 1328-1332.
  • Industrial Enzymes Market, 2018. By type (amylases, cellulases, proteases, lipases, and phytases), application (food & beverages, cleaning agents, and animal feed), source (microorganism, plant, and animal), and region - global forecast to 2022, https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html (Accessed Feb 8, 2018).
  • Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R, 2005. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 41: 38-44.
  • Kumar V, Bharti A, Negi YK, Gusain O, Pandey P, Bisht GS, 2012. Screening of actinomycetes from earthworm castings for their antimicrobial activity and industrial enzymes. Brazilian Journal of Microbiology, 43(1): 205-214.
  • Mehrotra S, Pandey PK, Gaur R, Darmwal NS, 1999. The production of alkaline protease by a Bacillus species isolate. Bioresource Technology, 67: 201-203.
  • Özcan K, 2013. Karadeniz deniz sedimentlerinden aktinomiset izolasyonu ve identifikasyonu. Giresun Üniversitesi Bilimsel Araştırma Projesi.
  • Özcan K, Çorbacı C, 2017. Streptomyces sp. K22 ve K30 suşlarindan lipaz ve proteaz enzim üretimi. Karadeniz Fen Bilimleri Dergisi, 7(2): 128-135.
  • Rapp P, Backhaus S, 1992. Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria. Enzyme and Microbial Technology, 14(11): 938-943.
  • Rick W, Stegbauer HP, 1974. α-amylase measurement of reducing groups. In: Bergmeyer HU, ed., Methods of Enzymatic Analysis. Academic Press, New York, pp. 885-890.
  • Sharma PK, Singh K, Singh R, Capalash N, Ali A, Mohammad O, Kaur J, 2012. Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Molecular Biology Reports, 39(3): 2795-2804.
  • Singh R, Kumar M, Mittal A, Mehta PK, 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6: 174.
  • Yalçın HT, Çorbacı, C, 2013. Isolation and characterization of amylase producing yeasts and improvement of amylase production. Turkish Journal of Biochemistry, 38(1): 101-108.

Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments

Year 2019, , 647 - 654, 01.06.2019
https://doi.org/10.21597/jist.466999

Abstract

Alkaline enzymes obtained from microbial sources find numerous applications in different industrial processes and have commercial value. The aims of the study were to investigate the potential of two actinobacteria (Streptomyces sp. K16 and K19) isolated from Black Sea sediments to produce industrial alkaline enzymes and to characterize their activities under different chemical and physical conditions. The optimal incubation time for the production was determined as 96 h, and by using two actinobacteria respectively 7.91 and 7.94 U mL-1 of activities for amylases, 0.55 and 0.82 U mL-1 for lipases and 3.07 and 2.34 U mL-1 for proteases were obtained. The optimal pH and temperature values for the enzymes were found to be pH 8.0 and 37°C. All the enzymes exhibited stability in different quantities after the incubation at pH values ranging from 3.0 and 10.0 for 2 h. On the other hand, the lipases remained stable up to 50°C although the amylases and proteases showed stability in varying ratios after 2 h incubation under the tested temperatures. In the light of the findings, the actinobacteria and their enzymes are thought to have potential for further studies.

References

  • Akhtar N, Mahmud ASM, Khan MS, Taznin T, Haque ME, Sultana S, Sultana S, 2013. Effects of cultural conditions on the production of extracellular protease by Streptomyces albolongus and Streptomyces aburaviensis. Enzyme Engineering, 2(2): 1-5.
  • Aly MM, Tork S, Al-Garni SM, Nawar L, 2012. Production of lipase from genetically improved Streptomyces exfoliates LP10 isolated from oil-contaminated soil. African Journal of Microbiology Research, 6(6): 1125-1137.
  • Arikan B, Unaldi N, Coral G, Colak Ö, Aygan A, Gülnaz O, 2003. Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochemistry, 38(10): 1397-1403.
  • Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248-254.
  • Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S, 2011. A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10: 221.
  • Deljou A, Arezi I, 2016. Production of thermostable extracellular a-amylase by a moderate thermophilic Bacillus licheniformis-AZ2 isolated from Qinarje Hot spring (Ardebil prov. of Iran). Periodicum Biologorum, 118(4): 405-416.
  • de Souza PM, Magalhaes PO, 2010. Application of microbial α-amylase in industry – a review. Brazilian Journal of Microbiology, 41(4): 850-861.
  • Ghorbel S, Kammoun M, Soltana H, Nasri M, Hmidet N, 2014. Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents. BioMed Research International, 2014: 1-8.
  • Gupta R, Beg QK, Lorenz P, 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59(1): 15-32.
  • Gurung N, Ray S, Bose S, Rai V, 2013. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International, 2013: 1-18.
  • Hoque M, Khanam M, Shiekh A, Nahar N, Khan MR, Khan ZUM, 2006. Characterization and optimization of α-amylase activity of Streptomyces clavifer. Pakistan Journal of Biological Sciences, 9(7): 1328-1332.
  • Industrial Enzymes Market, 2018. By type (amylases, cellulases, proteases, lipases, and phytases), application (food & beverages, cleaning agents, and animal feed), source (microorganism, plant, and animal), and region - global forecast to 2022, https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html (Accessed Feb 8, 2018).
  • Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R, 2005. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expression and Purification, 41: 38-44.
  • Kumar V, Bharti A, Negi YK, Gusain O, Pandey P, Bisht GS, 2012. Screening of actinomycetes from earthworm castings for their antimicrobial activity and industrial enzymes. Brazilian Journal of Microbiology, 43(1): 205-214.
  • Mehrotra S, Pandey PK, Gaur R, Darmwal NS, 1999. The production of alkaline protease by a Bacillus species isolate. Bioresource Technology, 67: 201-203.
  • Özcan K, 2013. Karadeniz deniz sedimentlerinden aktinomiset izolasyonu ve identifikasyonu. Giresun Üniversitesi Bilimsel Araştırma Projesi.
  • Özcan K, Çorbacı C, 2017. Streptomyces sp. K22 ve K30 suşlarindan lipaz ve proteaz enzim üretimi. Karadeniz Fen Bilimleri Dergisi, 7(2): 128-135.
  • Rapp P, Backhaus S, 1992. Formation of extracellular lipases by filamentous fungi, yeasts, and bacteria. Enzyme and Microbial Technology, 14(11): 938-943.
  • Rick W, Stegbauer HP, 1974. α-amylase measurement of reducing groups. In: Bergmeyer HU, ed., Methods of Enzymatic Analysis. Academic Press, New York, pp. 885-890.
  • Sharma PK, Singh K, Singh R, Capalash N, Ali A, Mohammad O, Kaur J, 2012. Characterization of a thermostable lipase showing loss of secondary structure at ambient temperature. Molecular Biology Reports, 39(3): 2795-2804.
  • Singh R, Kumar M, Mittal A, Mehta PK, 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6: 174.
  • Yalçın HT, Çorbacı, C, 2013. Isolation and characterization of amylase producing yeasts and improvement of amylase production. Turkish Journal of Biochemistry, 38(1): 101-108.
There are 22 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Cengiz Çorbacı 0000-0001-8697-0945

Kadriye Özcan 0000-0002-4913-6035

Publication Date June 1, 2019
Submission Date October 3, 2018
Acceptance Date November 23, 2018
Published in Issue Year 2019

Cite

APA Çorbacı, C., & Özcan, K. (2019). Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments. Journal of the Institute of Science and Technology, 9(2), 647-654. https://doi.org/10.21597/jist.466999
AMA Çorbacı C, Özcan K. Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments. Iğdır Üniv. Fen Bil Enst. Der. June 2019;9(2):647-654. doi:10.21597/jist.466999
Chicago Çorbacı, Cengiz, and Kadriye Özcan. “Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 647-54. https://doi.org/10.21597/jist.466999.
EndNote Çorbacı C, Özcan K (June 1, 2019) Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments. Journal of the Institute of Science and Technology 9 2 647–654.
IEEE C. Çorbacı and K. Özcan, “Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 2, pp. 647–654, 2019, doi: 10.21597/jist.466999.
ISNAD Çorbacı, Cengiz - Özcan, Kadriye. “Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments”. Journal of the Institute of Science and Technology 9/2 (June 2019), 647-654. https://doi.org/10.21597/jist.466999.
JAMA Çorbacı C, Özcan K. Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:647–654.
MLA Çorbacı, Cengiz and Kadriye Özcan. “Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 647-54, doi:10.21597/jist.466999.
Vancouver Çorbacı C, Özcan K. Production of Alkaline Enzymes by Marine Actinobacteria Isolated from Black Sea Sediments. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(2):647-54.