Research Article
BibTex RIS Cite
Year 2019, , 823 - 834, 01.06.2019
https://doi.org/10.21597/jist.497231

Abstract

References

  • AIST, 2018. Spectral Database for Organic Compounds, SDBS. http://sdbs.db.aist.go.jp (Date of Access: 30 October 2018).
  • Anderson MP, Uvdal P, 2005. New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). The Journal of Physical Chemistry A, 109: 2937-2941.
  • Anderson RJ, Bendell DJ, Groundwater PW, 2004. Organic Spectroscopic Analysis. The Royal Society of Chemistry, Sanderland-UK.
  • Becke AD, 1993. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98: 5648-5652.
  • Bellamy LJ, 1975. The Infrared Spectra of Complex Molecules. Wiley, New York-USA.
  • Bilkan MT, 2019. Quantum chemical studies on solvent effects, ligand-water complexes and dimer structure of 2,2ʹ-dipyridylamine. Physics and Chemistry of Liquids, 57(1): 100-116.
  • Bilkan MT, 2017. Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine. Journal of Molecular Liquids, 238: 523-532.
  • Bio-Rad Laboratories, 2018. Inc. SpectraBase. http://spectrabase.com/ad?a=SPECTRUM_JWm7vAp51SI&r (Date of Access: 30 October 2018).
  • Colthup NB, Daly LH, Wiberley E, 1964. Introduction to Infrared and Raman Spectroscopy. Academic Press, New York-USA.
  • Dennington R, Keith T, Millam J, 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission KS.
  • Diab MA, El-Sonbati AZ, El-Bindary AA, Abd El-Ghany HM, 2017. Thermal Stability and Degradation of Poly (N-phenylpropionamide) Homopolymer and Copolymer of N-Phenylpropionamide with Methyl Methacrylate. Arabian Journal of Chemistry, 10(2): S3732–S3739.
  • Ditchfield R, 1974. Self-Consistent Perturbation Theory of Diamagnetism. Molecular Physics, 27(4): 789-807.
  • Edreva AM, Velikova VB, Tsonev TD, 2007. Phenylamides in Plants. Russian Journal of Plant Physiology, 54(3): 287-301.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A.J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT-USA.
  • Fukui K, 1982. The Role of Frontier Orbitals in Chemical Reactions (Nobel Lecture). Angewandte Chemie, 21(11): 801–809.
  • Jamr'oz MH, 2004. Vibrational Energy Distribution Analysis VEDA4, Warsaw-Poland.
  • Klees TM, Sheffels P, Thummel KE, Kharasch ED, 2005. Pharmacogenetic Determinants of Human Liver Microsomal Alfentanil Metabolism and the Role of Cytochrome P450 3A5, Anesthesiology, 102(3): 550-556.
  • Lambert JB, Shurvell HF, Cooks RG, 1987. Introduction to Organic Spectroscopy. Macmillan Publishing, New York-USA.
  • Lee C, Yang W, Parr RG, 1988. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density. Physical Review B, 37: 785-789.
  • Liu L-F. Liu H, Pi H-J, Yang S, Yao M, Du W, Deng W-P, 2011. Facile AlCl3-Promoted Catalytic Beckmann Rearrangement of Ketoximes. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 41(4): 553-560.
  • Liu X, Schmalz TG, Klein DJ, 1992. Favorable Structures for Higher Fullerenes. Chemical Physics Letters, 188(5-6): 550-554.
  • London F, 1937. Théorie Quantique Des Courants Interatomiques Dans Les Combinaisons Aromatiques. Journal of Physical Radium, 8(10): 397-409.
  • Manolopoulos DE, May JC, Down SE, 1991. Theoretical Studies of the Fullerenes: C34 to C70. Chemical Physics Letters, 181(2-3): 105-111.
  • Mierina I, Gudelis E, Stepanovs D, Jure M, Mishnev A, Kolympadi M, Marković D, 2016. Crystal structure of 3-(4-hydroxy-3-methoxyphenyl)-N-phenylpropanamide, C16H17NO3. Zeitschrift für Kristallographie - New Crystal Structures, 231(2): 657-659.
  • Miertus S, Scrocco E, Tomasi J, 1981. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chemical Physics, 55(1): 117-129.
  • Na A, Hongjun P, Lifeng L, Wenting D, Weiping D, 2011. A Mild and Highly Efficient Catalyst for Beckmann Rearrangement, BF3•OEt2. Chinese Journal of Chemistry, 29(5): 947-950.
  • Nowrouzi N, Jonaghani MZ, 2012. Highly Selective Mono-N-benzylation and Amidation of Amines with Alcohols or Carboxylic Acids Using the Ph2PCl/I2/imidazole Reagent System. Canadian Journal of Chemistry, 90(60): 498-509.
  • O'boyle NM, Tenderholt AL, Langner KM, 2008. Cclib: A Library for Package‐Independent Computational Chemistry Algorithms. Journal of Computational Chemistry, 29, 839-845.
  • Öztürk N, Özdemir T, Alpaslan YB, Gokce H, Alpaslan G, 2018. Experimental (FT-IR, Raman and NMR) and Theoretical (B3LYP, B3PW91, M06-2X and CAM-B3LYP) Analyses of P-Tert-Butylphenyl Salicylate. Bilge International Journal of Science and Technology Research, 2(1): 56-73.
  • Pavia DL, Lampman GM, Kriz GS, Vyvyan JR, 2009. Introduction to Spectroscopy. Brooks/Cole Cengage Learning, USA.
  • Priyadharsini P, Dhanasekaran D, Kanimozhi B, 2013. Isolation, Structural Identification and Herbicidal Activity of N-phenylpropanamide from Streptomyces sp. KA1-3, Archives Of Phytopathology And Plant Protection, 46(3): 364-373.
  • Runge E, Gross EKU, 1984. Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12): 997–1000.
  • Silverstein RM, Webster FX, 1998. Spectroscopic Identification of Organic Compounds. 6th ed., John Wiley & Sons, New York-USA.
  • Stuart BH, 2004. Infrared Spectroscopy: Fundamentals and Applications. JohnWilley & Sons, England.
  • Watanabe Y, Tsuji Y, Kondo T, Takeuchi R, 1984. Platinum Complex Catalyzed Reductive N-Acylation of Nitro Compounds. The Journal Of Organic Chemistry, 1984, 49(23): 4451-4455.
  • Wolinski K, Hinton JF, Pulay P, 1990. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112(d): 8251–8260.
  • Yıldırım MH, 2018. Infrared and NMR Spectral Analyses and Computational Studies of 2-amino-3-methylbenzoic acid. Bilge International Journal of Science and Technology Research, 2(1): 74-82.

Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide

Year 2019, , 823 - 834, 01.06.2019
https://doi.org/10.21597/jist.497231

Abstract

Structural, vibrational, magnetic and electronic properties of N-phenylpropanamide were analyzed experimentally and theoretically. The molecular geometry optimization parameters, vibrational wavenumbers, proton and carbon NMR chemical shifts, frontier molecular orbitals and UV-Vis. wavelengths were computed with DFT/B3LYP method at the 6-311+G(d,p) basis set to compare the experimental data obtained from the literature. Calculated harmonic vibrational wavenumber assignments were obtained from the potential energy distribution (PED) analysis. Considering that the N-H…O intermolecular hydrogen bond interaction in crystal packing of N-phenylpropanamide may exist, molecular structure parameters and vibration frequencies of these groups in this interaction were investigated. UV-Vis. electronic absorption parameters, HOMO-LUMO analyses and molecular electrostatic potential (MEP) surface of N-phenylpropanamide were studied to explicate electronic transitions, intramolecular charge transfer and interaction sites in the molecule.

References

  • AIST, 2018. Spectral Database for Organic Compounds, SDBS. http://sdbs.db.aist.go.jp (Date of Access: 30 October 2018).
  • Anderson MP, Uvdal P, 2005. New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ζ Basis Set 6-311+G(d,p). The Journal of Physical Chemistry A, 109: 2937-2941.
  • Anderson RJ, Bendell DJ, Groundwater PW, 2004. Organic Spectroscopic Analysis. The Royal Society of Chemistry, Sanderland-UK.
  • Becke AD, 1993. Density‐Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98: 5648-5652.
  • Bellamy LJ, 1975. The Infrared Spectra of Complex Molecules. Wiley, New York-USA.
  • Bilkan MT, 2019. Quantum chemical studies on solvent effects, ligand-water complexes and dimer structure of 2,2ʹ-dipyridylamine. Physics and Chemistry of Liquids, 57(1): 100-116.
  • Bilkan MT, 2017. Structural and spectroscopic studies on dimerization and solvent-ligand complexes of Theobromine. Journal of Molecular Liquids, 238: 523-532.
  • Bio-Rad Laboratories, 2018. Inc. SpectraBase. http://spectrabase.com/ad?a=SPECTRUM_JWm7vAp51SI&r (Date of Access: 30 October 2018).
  • Colthup NB, Daly LH, Wiberley E, 1964. Introduction to Infrared and Raman Spectroscopy. Academic Press, New York-USA.
  • Dennington R, Keith T, Millam J, 2009. GaussView, Version 5, Semichem Inc., Shawnee Mission KS.
  • Diab MA, El-Sonbati AZ, El-Bindary AA, Abd El-Ghany HM, 2017. Thermal Stability and Degradation of Poly (N-phenylpropionamide) Homopolymer and Copolymer of N-Phenylpropionamide with Methyl Methacrylate. Arabian Journal of Chemistry, 10(2): S3732–S3739.
  • Ditchfield R, 1974. Self-Consistent Perturbation Theory of Diamagnetism. Molecular Physics, 27(4): 789-807.
  • Edreva AM, Velikova VB, Tsonev TD, 2007. Phenylamides in Plants. Russian Journal of Plant Physiology, 54(3): 287-301.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A.J, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT-USA.
  • Fukui K, 1982. The Role of Frontier Orbitals in Chemical Reactions (Nobel Lecture). Angewandte Chemie, 21(11): 801–809.
  • Jamr'oz MH, 2004. Vibrational Energy Distribution Analysis VEDA4, Warsaw-Poland.
  • Klees TM, Sheffels P, Thummel KE, Kharasch ED, 2005. Pharmacogenetic Determinants of Human Liver Microsomal Alfentanil Metabolism and the Role of Cytochrome P450 3A5, Anesthesiology, 102(3): 550-556.
  • Lambert JB, Shurvell HF, Cooks RG, 1987. Introduction to Organic Spectroscopy. Macmillan Publishing, New York-USA.
  • Lee C, Yang W, Parr RG, 1988. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density. Physical Review B, 37: 785-789.
  • Liu L-F. Liu H, Pi H-J, Yang S, Yao M, Du W, Deng W-P, 2011. Facile AlCl3-Promoted Catalytic Beckmann Rearrangement of Ketoximes. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 41(4): 553-560.
  • Liu X, Schmalz TG, Klein DJ, 1992. Favorable Structures for Higher Fullerenes. Chemical Physics Letters, 188(5-6): 550-554.
  • London F, 1937. Théorie Quantique Des Courants Interatomiques Dans Les Combinaisons Aromatiques. Journal of Physical Radium, 8(10): 397-409.
  • Manolopoulos DE, May JC, Down SE, 1991. Theoretical Studies of the Fullerenes: C34 to C70. Chemical Physics Letters, 181(2-3): 105-111.
  • Mierina I, Gudelis E, Stepanovs D, Jure M, Mishnev A, Kolympadi M, Marković D, 2016. Crystal structure of 3-(4-hydroxy-3-methoxyphenyl)-N-phenylpropanamide, C16H17NO3. Zeitschrift für Kristallographie - New Crystal Structures, 231(2): 657-659.
  • Miertus S, Scrocco E, Tomasi J, 1981. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilizaion of AB Initio Molecular Potentials for the Prevision of Solvent Effects. Chemical Physics, 55(1): 117-129.
  • Na A, Hongjun P, Lifeng L, Wenting D, Weiping D, 2011. A Mild and Highly Efficient Catalyst for Beckmann Rearrangement, BF3•OEt2. Chinese Journal of Chemistry, 29(5): 947-950.
  • Nowrouzi N, Jonaghani MZ, 2012. Highly Selective Mono-N-benzylation and Amidation of Amines with Alcohols or Carboxylic Acids Using the Ph2PCl/I2/imidazole Reagent System. Canadian Journal of Chemistry, 90(60): 498-509.
  • O'boyle NM, Tenderholt AL, Langner KM, 2008. Cclib: A Library for Package‐Independent Computational Chemistry Algorithms. Journal of Computational Chemistry, 29, 839-845.
  • Öztürk N, Özdemir T, Alpaslan YB, Gokce H, Alpaslan G, 2018. Experimental (FT-IR, Raman and NMR) and Theoretical (B3LYP, B3PW91, M06-2X and CAM-B3LYP) Analyses of P-Tert-Butylphenyl Salicylate. Bilge International Journal of Science and Technology Research, 2(1): 56-73.
  • Pavia DL, Lampman GM, Kriz GS, Vyvyan JR, 2009. Introduction to Spectroscopy. Brooks/Cole Cengage Learning, USA.
  • Priyadharsini P, Dhanasekaran D, Kanimozhi B, 2013. Isolation, Structural Identification and Herbicidal Activity of N-phenylpropanamide from Streptomyces sp. KA1-3, Archives Of Phytopathology And Plant Protection, 46(3): 364-373.
  • Runge E, Gross EKU, 1984. Density-Functional Theory for Time-Dependent Systems. Physical Review Letters, 52(12): 997–1000.
  • Silverstein RM, Webster FX, 1998. Spectroscopic Identification of Organic Compounds. 6th ed., John Wiley & Sons, New York-USA.
  • Stuart BH, 2004. Infrared Spectroscopy: Fundamentals and Applications. JohnWilley & Sons, England.
  • Watanabe Y, Tsuji Y, Kondo T, Takeuchi R, 1984. Platinum Complex Catalyzed Reductive N-Acylation of Nitro Compounds. The Journal Of Organic Chemistry, 1984, 49(23): 4451-4455.
  • Wolinski K, Hinton JF, Pulay P, 1990. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112(d): 8251–8260.
  • Yıldırım MH, 2018. Infrared and NMR Spectral Analyses and Computational Studies of 2-amino-3-methylbenzoic acid. Bilge International Journal of Science and Technology Research, 2(1): 74-82.
There are 37 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Nuri Öztürk 0000-0001-8742-0160

Halil Gökce 0000-0003-2258-859X

Gökhan Alpaslan 0000-0002-7982-3266

Yelda Bingöl Alpaslan This is me 0000-0002-1629-6016

Can Alaşalvar 0000-0003-0995-4188

Publication Date June 1, 2019
Submission Date December 14, 2018
Acceptance Date February 9, 2019
Published in Issue Year 2019

Cite

APA Öztürk, N., Gökce, H., Alpaslan, G., Bingöl Alpaslan, Y., et al. (2019). Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide. Journal of the Institute of Science and Technology, 9(2), 823-834. https://doi.org/10.21597/jist.497231
AMA Öztürk N, Gökce H, Alpaslan G, Bingöl Alpaslan Y, Alaşalvar C. Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide. Iğdır Üniv. Fen Bil Enst. Der. June 2019;9(2):823-834. doi:10.21597/jist.497231
Chicago Öztürk, Nuri, Halil Gökce, Gökhan Alpaslan, Yelda Bingöl Alpaslan, and Can Alaşalvar. “Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 823-34. https://doi.org/10.21597/jist.497231.
EndNote Öztürk N, Gökce H, Alpaslan G, Bingöl Alpaslan Y, Alaşalvar C (June 1, 2019) Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide. Journal of the Institute of Science and Technology 9 2 823–834.
IEEE N. Öztürk, H. Gökce, G. Alpaslan, Y. Bingöl Alpaslan, and C. Alaşalvar, “Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 2, pp. 823–834, 2019, doi: 10.21597/jist.497231.
ISNAD Öztürk, Nuri et al. “Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide”. Journal of the Institute of Science and Technology 9/2 (June 2019), 823-834. https://doi.org/10.21597/jist.497231.
JAMA Öztürk N, Gökce H, Alpaslan G, Bingöl Alpaslan Y, Alaşalvar C. Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:823–834.
MLA Öztürk, Nuri et al. “Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 823-34, doi:10.21597/jist.497231.
Vancouver Öztürk N, Gökce H, Alpaslan G, Bingöl Alpaslan Y, Alaşalvar C. Structural, Spectroscopic (FT-IR, Raman, NMR and UV-Vis.) and Computational Studies on Nphenylpropanamide. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(2):823-34.